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Abstract

This report describes a image rendering method based on a Generative Ad-
versarial Network (GAN). Given an input synthetic image of a target spacecraft
with a certain pose configuration, the proposed method outputs a high fidelity
image of the target spacecraft with the same pose. This work demonstrates
this method by generating two image datasets of a spacecraft, the first dataset
will be produced using an OpenGL rendering pipeline while the second dataset
will be produced by capturing real images of a mock-up spacecraft placed in a
high fidelity illumination environment.

1 Introduction

The on-board determination of the pose, i.e. the relative position and attitude, of a
noncooperative client spacecraft using a monocular camera is a key-enabling tech-
nology for future on-orbiting servicing and debris removal missions such as ESA’s
e.Deorbit and PROBA-3 [2], ANGELS by US Air Force [13], PRISMA by OHB Swe-
den [4]. The existing state-of-the-art on monocular pose determination for space-
craft depend on classical image processing algorithms that identify visible target
features[3, 1, 10]. However, these methods are disadvantaged due to the lack of
robustness in the presence of adverse illumination conditions and the computational
complexity resulting from the evaluation of a large number of possible pose hy-
potheses. To overcome these disadvantages, several authors have proposed the use
of deep learning techniques [22, 12, 16, 18, 21, 17, 19, 20, 11]. However, the success
of these techniques depends on the availability of large image datasets of the target
spacecraft. Unlike datasets containing images of terrestrial objects such as dogs and
cats, datasets containing images of spacecraft are expensive to obtain and often lack
the illumination and texture fidelity required to guarantee high navigation accuracy.
Robotic facilities such as the one present at the Space Rendezvous Laboratory of
Stanford University (see fig. 1 can be used to reproduce high fidelity illumination
and texture conditions, however, such facilities are constrained due to the size of
the target mock-up spacecraft and the motion of the robotic arm.
Hence, this work proposes the use of a Generative Adversarial Network (GAN)
to produce images with the flexibility provided by a software-only rendering of a
target spacecraft but with the fidelity provided by a hardware-in-the-loop facility.
The work would result in the creation of a large quantity of high fidelity imagery
of a target spacecraft. Such imagery would then allow the reliable training of deep
learning techniques, which can output the pose of the same target spacecraft during
a formation flying mission.
The current work utilizes the pix2pix architecture [9] proposed by Isola et al. In or-
der to train the pix2pix architecture, this work entails the generation of two datasets:
1) synthetic imagery generated using a OpenGL rendering pipeline, and 2) real im-
agery of a mock-up spacecraft placed in a high fidelity illumination environment.
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2 Related work

There has been a wide body of work on Generative Adversarial Networks since
the marquee paper by Goodfellow et al. in 2014 [8]. This corpus of literature
can be roughly divided into two categories based on the choice of their loss. For
example, a lot of techniques treat the image-to-image translation problems using
an “unstructured” loss [14, 23]. In contrast, a conditional GAN uses a structured
loss function [6, 7, 15]. A conditional GAN is more suitable to this particular
application due to the requirement of matching the pose of the spacecraft in the
generated images with the pose of the spacecraft in the input image.

3 Dataset Generation

This work generated synthetic images of the Tango spacecraft used in the PRISMA
mission [5]. Each image is constrained to be of 256 pixels by 256 pixels so that it
could be directly used as an input to the pix2pix architecture. The camera field of
view was selected to be 31.5 degrees, modeling after the close range camera flown
aboard the Mango spacecraft of the PRISMA mission. In order to define the position
and orientation of the camera relative to the target spacecraft, a set of points were
selected in the three-dimensional space along the surface of a sphere surrounding the
Tango spacecraft. To account for scale, spheres of three different radii were selected.

Figure 1: Visualization of the viewpoints used in the synthetic dataset creation. Left: Par-
tial visualization. Middle: Complete visualization. A wireframe model of Tango spacecraft
(in orange) is shown here but a complete texture model was used during image render-
ing. Right: Robotic facility of Space Rendezvous Lab at Stanford with camera mounted on
end-effector of a robotic arm pointed at a mock spacecraft.

To show how the points of the three spheres in Figure 1 are selected, let us first
define the target object reference frame, T , and the camera reference frame, C, as
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shown in Figure 2. The relative attitude between the two frames can be described
by a set of Euler angles, α, β, γ. Each of these Euler angles are defined between
values of 0 and 360 degrees. We discretized this range in 22 linearly equally spaced
points. This produced a set of 10648 points in the three dimensional Euler angle
space. For a given radius of the sphere shown in Figure 1, these points produce
10648 camera orientations. We then chose the magnitude of the relative position of

the target spacecraft w.r.t. the camera,
∥∥∥Ct∥∥∥, (or the radii of the spheres in Figure

1) as 9 meters.

Camera Frame C Target Frame T

Ct

Figure 2: The two reference frames used in synthetic image generation.

For each of these pose configurations, we produced four synthetic images with vary-
ing levels of texture information and pixel resolution. In total, we generated 42592
images. A subset of these were then partitioned into four datasets: Syn-1, Syn-2,
Syn-3, and Syn-4. Table 1 presents the details for these datasets. Some sample
images from these four datasets are shown in Figure 3. Finally, we captured images
of a mock spacecraft using the robotic facility at the Space Rendezvous Laboratory.
The facility consists of a seven degree of freedom robotic arm situated in a 3 x 3 x 8
[m] room. A camera is mounted at the robot’s end-effector, which is used to capture
images of the test article placed at one end of the room. The test article is illumi-
nated using ten custom-engineered illumination panels that have been calibrated to
match the radiometric properties of the Earth’s albedo in low Earth orbits. Using
this setup, we captured 100 images of the Tango spacecraft. Table 1 categorizes this
dataset as ”Real1”. The relative pose of the camera and the target spacecraft was
measured using a motion tracker system. This relative pose was used to create the
synthetic images of the ”Syn5” dataset.

4 Methods

GANs have been explored at depth in the last two-three years ever since the marquee
paper by Goodfellow et al. [8]. However, the pix2pix architecture proposed by Isola
et al. [9] focused on “conditional” GANs such that a conditional generative model
can be learned from pairs of images to enable image-to-image translation tasks such
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Table 1: Details of the four synthetic datasets generated as part of this work.

Dataset Texture Information Resolution # images

Syn1 High 256 x 256 1250

Syn2 Low 256 x 256 1250

Syn3 Medium 512 x 512 1250

Syn4 High 256 x 256 1250

Syn5 Medium 512 x 512 100

Real1 - 512 x 512 100

Figure 3: Montage of the front view of the Tango spacecraft as present in the six
datasets.

as the one described in this work. The pix2pix architecture was chosen as the base-
line architecture for two reasons. Firstly, their use of a convolutional “PatchGAN”
classifer in the descriminator would penalize at the scale of image patches. This
would make it relatively straightforward for our application to achieve the desired
level of texture fidelity in the output imagery. Secondly, unlike other works such as
CyclGAN [24], their architecture uses pair-wise inputs leading to higher fidelity in
the output imagery, a luxury that we can afford in our particular application. Both
the generator and descriminator architectures of pix2pix use modules of of the form
convolution-BatchNorm-Relu. The details of their architecture is provided in the
original paper, and hence will not be repeated here for the sake of brevity. Do note
that the final objective that is being minimized is:

G∗ = argminGmaxDLc,GAN (G,D) + λLL1(G) (1)
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where Lc,GAN (G,D) is the objective function of the conditional GAN and LL1(G)
is the L1 distance between the generator output and the ground truth image.
The pix2pix source code was implemented in TensorFlow and largely inspired by
the implementation of Christopher Hesse.
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5 Experiments/Results/Discussion

Using the baseline pix2pix architecture, we conducted three experiments using the
images of the following datasets: experiment 1: Syn 1 ↔ Syn 2, experiment 2: Syn 3
↔ Syn 4, and experiment 3: Syn 5 ↔ Real1. In particular, the objective of the first
and second experiments was to train the generator to output imagery resembling
the Syn 2 and Syn 4 datasets, respectively. The objective of the third experiment
was to emulate illumination conditions present in the real dataset.
For the first two experiments, we produced 1000 labeled pairs as part of the training
set. The other 250 pairs were used as the validation set. We ran the training for 200
epochs with a batch size of 1 (pair). We used the Adam optimizer to minimize the
loss presented in equation 1, where the weight λ was chosen to be 100.0. The initial
learning rate for Adam was chosen as 0.0002 with the momentum term, β1 as 0.5.
Note that images were 256 x 256 in size for the first experiment while they were 512
x 512 in size for the second experiment. The LL1(G) loss for the two experiments,
as reported by TensorBoard, is shown in Figure 4. Qualitatively, the results look
promising, however, the generator had trouble emulating the solar panel texture
correctly due to the presence of repeating features (solar cells).
For the third experiment, we captured a series of 100 images from the robotic fa-
cility at the Space Rendezvous Laboratory at Stanford University. For each image,
we measured the relative position and orientation of the mock-up spacecraft with
respect to the camera mounted on the end-effector of the robotic arm. Since the
number of images available for this experiment was small, we used transfer learning.
In particular, we resumed the training of the generator and the adversarial networks
from the last training checkpoint of experiment 2 using the same hyper-parameters
as before. To examine the results from the three experiments, we generated images
using the trained generator network. Some select results are shown in Figure 5.

Figure 4: The LL1(G) loss for the three experiments, as reported by TensorBoard.
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Figure 5: Some results from experiments 1, 2, and 3. Left column shows, the input
image to the generator, middle column shows the output, and the right column
shows the ground truth.

6 Conclusion/Future Work

This report presents a method to simulate images of a target spacecraft with special
emphasis on high fidelity reproduction of the pose and illumination conditions. Such
a method can be used to input synthetic images generated using a simple image ren-
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derer to produce images with illumination, pose, and texture properties of a real
spacecraft. Hence, this method can be used to generate thousands of images of such
spacecraft, which can then be used to train algorithms required for spacecraft dock-
ing. The baseline architecture adopted in this work, pix2pix, qualitatively had very
promising results due to its use of a structured loss during training. In the future,
we would like to experiment with a larger dataset of real imagery obtained from
the robotic testbed, perform quantiative evaluation of the pose difference between
generator output and input images, and experiment with other architectures.
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