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This work addresses the design and validation of a robust monocular vision-based pose initialization architecture

for close-range onorbit-servicing and formation-flying applications. The aim is to rapidly determine the pose of a

passive space resident object using its known three-dimensional wireframe model and a single low-resolution

two-dimensional image collected on board the servicer spacecraft. In contrast to previous works, the proposed

architecture is onboard executable and capable of estimating the pose of the client without the use of fiducial markers

and without any a priori range measurements or state information. A novel feature detection method based on the

filtering of the weak image gradients is used to identify the true edges of the client in the image, even in presence of the

Earth in background. The detected features are synthesized using simple geometric constraints to dramatically

reduce the search space of the feature correspondence problem, which is solved using the EPnP method. This

approach is proven to be an order of magnitude faster than the state-of-the-art random sample consensus methods.

A fast Newton–Raphson method that minimizes the fit error between corresponding image and model features is

employed to refine the pose estimate and to resolve pose ambiguity. The proposed methodology is tested using actual

space imagery collectedduring thePRISMAmissionat about a 700 kmaltitude anda 10m interspacecraft separation.

I. Introduction

T HE onboard determination of the pose (i.e., the relative position

and attitude) of a noncooperative client spacecraft using a

monocular camera is a key-enabling technology for future onorbiting

servicing and debris removalmissions such as PROBA-3 byESA [1],

autonomous nanosatellite guardian for evaluating local space

(ANGELS) by the U.S. Air Force [2], and Restore-L by NASA [3].

The knowledge of the current pose of the client spacecraft during

proximity operations allows real-time generation of the full-degree-

of-freedom approach trajectory and control update [4]. This aspect

is crucial in noncooperative maneuvers because the kinematic

characteristics of the client are unknown before the launch of the

mission; therefore, the rendezvous and docking trajectory must be

generated on board using the current state estimates. In contrast to

other state-of-the-art systems based on light detection and ranging

(LIDAR) and stereo camera sensors, monocular navigation ensures

rapid pose determination under low power and mass requirements

[5]. Therefore, monocular pose determination is also the natural

candidate as a navigation system in small spacecraft such asCubeSats

for future formation flights missions [6,7].

Due to these advantages, navigation systems employing

monocular cameras have been proposed in order to enable rapid

pose estimation and tracking in close range: up to a few centimeters to

the target using limited mass and power resources [8–15]. Typically,

these systems employ an image processing subsystem that identifies
the visible target’s features in the monocular image followed by a
dedicated pose solver and an extended Kalman filter. This routine is
executed in a closed loop for pose tracking during the rendezvous
maneuver. In general, the pose solver is an iterative algorithm that
minimizes a certain fit error between the features detected in the
image and the corresponding features of a known reference three-
dimensional (3-D) model. All of the aforementioned navigation
systems also require a priori information of the pose to kick start the
pose estimation and tracking. In the presence of a poor initialization,
these systems may converge to a local minimum, resulting in
incorrect pose solutions. Existing work on pose initialization for
spaceborne applications aims to directly apply terrestrial robotic
navigation algorithms to the space imagery [16–18]. However, these
techniques are 1) too computationally expensive to implement on
boardCubeSats, 2) require extensive offline training, or 3) require the
presence of known fiducial markers on the client spacecraft.
The problemof determining the pose of an object using amonocular

image and the object’s 3-D model has been extensively addressed
in the research field of computer vision, typically for terrestrial
applications. One of the first solutions to this problem is due toDhome
et al. [19], who proposed a closed-form solution to solve for the pose,
given the correspondences between the edges detected in the image
and the line segments of the 3-D model. To solve for the correct
correspondences, it follows an exhaustive predictive and verification
step by matching all possible sets of three 3-D model line segments
with three two-dimensional (2-D) image edges. To avoid an exhaustive
search for the feature correspondences, authors have used soft
assign [20,21]; however, its accuracy depends on manual tuning of
parameters and it has been shown to be slower than random sample
consensus (RANSAC) [22]. Following the work of Dhome et al. [19],
numerous algorithms for finding the object’s pose from the image
and model feature correspondences have been proposed [23–27].
Although these algorithms do not require a priori pose information,
they produce a correct pose solution only if a number of correct feature
correspondences are provided. Notably, this aspect limits the real-time
application of these algorithms for pose initialization.
In regard to solving the problem of pose initialization for

spacecraft applications, Kanani et al. [18] and Petit et al. [28]
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presented a pose initialization architecture based on a dedicated
offline learning approach where a hierarchical model view graph
using prototype views of the 3-D model was built. The view graph
was then explored during the online phase to find the prototype view
for which the contour corresponds themost with the detected contour
in the image. This approach is inspired from template matching
approaches where the input monocular image is searched for specific
features and/or image sections that can be matched to an assigned
template [29]. However, in the absence of a large database of
precomputed renderings of the target, these approaches tend to be
very limiting because small changes in the target orientation and
position may greatly affect its appearance. Grompone [10] proposed
an initialization scheme that employed the Harris algorithm [30] for
feature detection, together with a linear eight-point algorithm to solve
for the pose. However, the scheme only provided relative distance
information based on background subtraction and Gaussian blob
detection algorithms. Tests on the actual images of the Soyuz and
Orbital Express spacecraft showed that themethodologywas capable
of correctly determining the region of interest (ROI) in the image.
Finally, D'Amico et al. [31] proposed to solve the pose initialization
problem through perceptual organization of the client’s true edges
detected in the image using the Sobel and Hough algorithms [32].
Preliminary tests on actual images from the PRISMA mission [33]
showed the capability to determine the precise relative position and
attitude of the target vehicle without a priori state information.
However, tests alsodemonstrated twokey limitations of this technique:
first, the initial pose is dependent on a computationally expensive
iterative view-space discretization not suitable for real-time execution;
second, the image processing lacks robustness to illumination and
background conditions.
In summary, the existing state-of-the-art methods show promising

progress toward solving the problem of pose initialization for
spaceborne applications; however, they suffer from two main
challenges. First, the image background, the high reflectivity of the
target’s surface materials, and the absence of sunlight during the
orbit pose significant problems in detecting the key features of a
noncooperative spacecraft. The second challenge is posed by the large
search space for the correct feature correspondences between the 3-D
model and the image. An exhaustive prediction and verification
procedure is too computationally expensive for spaceborne hardware,
especially on smaller platforms such as CubeSats.
To address these challenges, this paper presents the design and

validation of the Sharma–Ventura–D’Amico (SVD) architecture for
robustmonocular vision-based pose initialization.With respect to the
state-of-the-art techniques, the proposed architecture is 1) robust to
the background in the images; 2) requires no a priori knowledge of the
target spacecraft’s attitude and position; and 3) is computationally
efficient, i.e., an accurate pose can be initializedwithin a few seconds.
To ensure robustness to background, this paper introduces the weak
gradient elimination (WGE) technique. WGE detects and eliminates
the regions of weak gradient in the image and highlights the regions
of the strongest gradients. In this way, only the strongest edges in the
image are used for feature extraction using the Hough transform [32].
The extracted features are then organized into geometrically
complex groups to dramatically reduce the search space of the
feature correspondence problem. Possible hypotheses for the
feature correspondence are used to efficiently solve the perspective-
n-point (PnP) problem. The architecture is validated through actual
space imagery collected during the PRISMAmission [33] at about a
700 km altitude and a 10 m interspacecraft separation.
The paper is organized as follows: Sec. II introduces the pose

initialization problem and an overview of the proposed architecture.
Sections III and IV describe the technical design details of the image
processingandposedetermination subsystems, respectively. SectionV
presents four tests that compare the proposed architecture against
the state-of-the-art techniques for monocular vision-based pose
initialization. These tests use synthetic imagery as well as imagery
collected during the PRISMA mission. Section VI elaborates on the
conclusionswith a discussion on the applicability of this architecture in
a monocular vision-based navigation system for onorbit servicing and
formation flying missions.

II. Problem Statement and Architecture Overview

The schematic representation of the noncooperative pose
initialization problem from a 2-D image and a 3-D model is shown
in Fig. 1. In particular, the pose initialization problem consists of
determining the position of the target’s center of mass tC and the
orientation of the vehicle’s principal axes RBC with respect to the
camera frame C. It is assumed that the 3-D model of the target is
defined in the body-fixed coordinate system B, and it is aligned with
the target’s principal axes with its origin at the center of mass. The
orientation is defined by the direction cosine matrix RBC from the
coordinate system of B to C.
LetqB be apoint of the3-Dmodel expressed in coordinate systemB.

By employing the standard pinhole camera model, the corresponding
point p � �u; v�T in the rectified image can be obtained using the
3-D/2-D true perspective projection equation:

rC � � xC yC zC �T � RBCqB � tC (1)

p �
�
xC

zC
fx � Cx;

yC

zC
fy � Cy

�
(2)

where rC represents the point of the target spacecraft expressed in
camera frame C according to the current pose: tC and RBC. Although
fx and fy denote the focal lengths of the camera, �Cx; Cy� denotes the
principal point of the image. Without loss of generality, it is assumed
that direction C3 is pointed along the boresight of the camera and that
directionsC1 andC2 are alignedwithdirectionsP1 andP2 of the image
frame P, respectively. The unknown coefficients in the 3-D/2-D true
perspective equations are the three components of the client position tC

and the three parameters that define the rotation matrix RBC of the
target orientation. To solve this system of equations, at least three
image points and corresponding model points are required. However,
at least six correspondences between the image and model points are
required to obtain a unique solution with a general configuration of
points [34].
Figure 2 illustrates the proposed architecture to solve for the initial

pose of a noncooperative client. The key features of this architecture are
1) the fusion of theWGEtechniquewith theSobel edge detector and the
Hough algorithm for feature detection; 2) the use of feature synthesis to
reduce the search space for feature correspondences between the image
and the 3-D model; and 3) the combination of the EPnP solver and the

p

qB

 

Image Frame P

Camera Frame C

Object Frame B

RBC

C

B

r  C

t C

C2

C3

C1

P2

P1

Fig. 1 Schematic representation of the pose estimation problem using a
monocular image.
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Newton–Raphson method for pose determination. The architecture
consists of two subsystems:
1) The image processing subsystem accepts a single 2-D image as

its input. It distinguishes the target spacecraft from the background,
detects the target spacecraft’s edge features, and then synthesizes
them into geometric groups.
2) The pose determination subsystem accepts the feature groups

detected in the image processing subsystem and the 3-D model as its
input. It pairs the 2-D and 3-D geometric groups to create multiple
correspondence hypotheses. For each hypothesis, the endpoints of
the line segments forming the geometric groups are used in solving
the 3-D/2-D perspective Eqs. (1) and (2). Of the multiple resulting
pose solutions, the top five are iteratively refined and the best is
selected using a reprojection error as the confidence metric.
With respect to the state-of-the-art image processing, the key

innovation of this subsystem is the use of the WGE technique to
efficiently distinguish the target spacecraft from the background. The
same technique is used to boost the output of off-the-shelf edge
detection techniques to provide a robust identification of the small as
well as large edges of the spacecraft. Second, the key innovation in
the pose determination subsystem is the use of geometrically
complex feature groups detected in the image to solve the feature
correspondence problem. This use of feature groups overcomes the
challenge of pose ambiguity while still being more computationally
efficient than the state-of-the-art methods such as the pose-space grid
search or RANSAC. Lastly, the pose solution output is accompanied
by its reprojection error, which denotes the quality of its fit with the
detected image features. Therefore, if the reprojection error is
calculated to be higher than a threshold, the solution can be classified
as a “low-confidence solution.” In case none of the features or a low
number of features is detected in the image, a coarse relative position
solution is output using the ROI detected by the WGE technique.
In this manner, the SVD architecture can be used iteratively on a
sequence of images until a “high-confidence solution” is available.

III. Image Processing

The goal of the image processing subsystem is to extract the most
significant features of the target spacecraft in the input image.
Subsequently, the extracted features are organized in geometrically
complexgroups inorder to performanefficient feature correspondences
analysis for pose determination.
Pose initialization is assumed to be executed at the beginning of the

close-range procedures, ideally before the pose tracking that leads to
the capture of the client. Because the distance from the target is still
considerable (30 m in the case of the PRISMA mission [33]), small
details in the client’s surface are not visible from the acquired image
and only the most significant features such as the endpoints of the
body edges, antennas, and solar panels can be distinguished. For this
reason, the image processing subsystem solely focuses on extracting
edges or straight line segments. Furthermore, as opposed to features
based on color gradients, textures, and optical flow, edges are less
sensitive to illumination changes [35].
Robust image processing is one of the main challenges in vision-

based pose estimation. In fact, illumination conditions in space may
even vary during a single orbit, and therefore may cause inaccurate
and unreliable features detection. This is mainly due to the high-
contrast illumination and low signal-to-noise ratio. Moreover, the
potential presence of the Earth in the image background affects
the image processing due to the presence of additional features of the
planet’s surface and the high reflectivity of oceans and clouds.

State-of-the-art techniques for straight line segment detection such as
the Canny edge detector [36] followed by the Hough transform [32]
may be biased if applied directly to the image because these
algorithms are gradient based and do not distinguish the foreground
from the background. These methods also require the definition of
numerous hyperparameters, which are difficult to tune for broad
applicability because the imaged scene and the illumination conditions
are constantly changing throughout the orbit. Finally, current methods
for image segmentation [29] are computationally expensive, and
therefore not suitable for onboard spacecraft applications.
To effectively and rapidly detect the client’s edges, even in the

presence of the Earth in the background, a hybrid image processing
subsystem is proposed in Fig. 3. With respect to the off-the-shelf
feature detection techniques, the key innovation of this subsystem is
the introduction of the WGE technique and its fusion with the state-
of-the-art edge detection techniques to provide an efficient and robust
identification of the true edges of the spacecraft. As demonstrated in
Sec. V, theWGE technique identifies a more accurate and robust ROI
in the image as compared to the state-of-the-art techniques, such as
maximally stable extremal regions (MSERs) [37]. The ROI detection
makes the subsystem robust to the background, aswell as allows for an
automated selection of hyperparameters required for the Hough
transform. Hence, the subsystem not only finds straight line segments
corresponding to the large features of the spacecraft but it also detects
straight line segments corresponding to smaller features such as
antennas. Even though the current image processing subsystem relies
on detecting straight line segments, it can be easily extended to include
cylindrical, spherical, and circular features through the formulation of
separate Hough transforms. The edges corresponding to these features
can then be classified as additional feature groups within the proposed
architecture. In the following sections, the proposed feature detection
and feature synthesis procedures are described in detail.

A. Feature Detection

The feature detection procedure aims at identifying a robust set of
line segments in the rectified input image corresponding to the most
significant true edges of the client spacecraft. Some line segments
correspond to the spacecraft’s large features (such as the contour of
bus and solar panels), whereas others correspond to small features
such as antennas. In particular, small features are important for
resolving geometry-related ambiguity in pose determination. This
aspect will be discussed in more detail in Sec. IV.
Figure 3 shows the intermediate steps of the feature detection

procedure. The input raw image is assumed to be rectified, i.e.,
corrected for lens distortion [38]. The Gaussian filter is applied to the
input image in order to attenuate the image noise. The filtered image is
then subjected to two parallel streams. In the first stream, the WGE
technique is applied in order to distinguish the spacecraft from the
background. A Hough transform is then applied to find smaller edges
that can correspond to features such as the antennas. In the second
stream, the Sobel algorithm is used for edge detection, followed by
another Hough transform to extract long edges that can correspond to
features such as the solar panels. The line segments obtained from
these two streamsare finallymerged,whereas duplicates are discarded.

1. Weak Gradient Elimination

The weak gradient elimination technique was conceived to
distinguish the target spacecraft in the foreground from the
background. The size of the resulting ROI enabled the automated
selection of hyperparameters required for the detection of both small

2-D Image Feature 
Detection

Spacecraft 
3-D Model

Feature 
Synthesis

Perspective 
Equation 
Solutions

Pose 
Solution

Feature 
CorrespondenceImage Processing

Pose Determination

Pose 
Refinement

Fig. 2 Proposed pose initialization architecture with inputs of a single 2-D image, a 3-D model, and an output of the pose solution.
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and large features of the spacecraft. State-of-the-art algorithms based
on the Hough transform rely on a single set of manually tuned

hyperparameters, and therefore tend to either detect long line
segments only (as these get more votes) or fuse the short line

segments with one of the proximal longer line segments.Moreover, if
the image has the planet in the background, line segments belonging

to clouds or coastlines bias the output. The WGE technique solves

both of these problems.
The first step of this technique is the calculation of the image

gradient G�u; v� at all pixel locations by using the Prewitt operator
[39]. In particular, two 3 × 3 kernels are convolved with the original
image to calculate approximations of the horizontal and vertical

derivatives. If we define the input image asA, the approximation of
the horizontal derivative at each point in the image as Gx, and the

approximation of the vertical derivative at each point in the image as
Gy, then

Gx �

2
64
−1 0 �1

−1 0 �1

−1 0 �1

3
75 �A Gy �

2
64
−1 −1 −1
0 0 0

�1 �1 �1

3
75 �A

(3)

where � denotes the two-dimensional convolution operation. At each

point in the imageA�u; v�, the resulting gradient approximations can
be combined to give the gradient magnitude using

G�u; v� �
�����������������������������������������
G2

x�u; v� � G2
y�u; v�

q
(4)

Figure 4a shows thegradient of a test image that has theEarth as the

background. Due to the presence of the planet, it is difficult to

distinguish the spacecraft’s true edges from the background clearly.

To detect the spacecraft, the histogram of the gradient is obtained by

sorting G�u; v� in 100 uniformly spaced bins. As can be observed in

Fig. 4b, most of the gradient intensities are weak and correspond to

the features in the background or on the spacecraft’s surface.

The obtained histogram can be approximated by an exponential

probability distribution function (PDF), as in Fig. 4b. The weak

gradient pixel locations are then classified by thresholding the PDF fit

to the gradient histogram. More precisely, the bin corresponding to

the cumulative distribution of 0.99 is found by calculating the area

under the curve of the PDF. All pixel locations corresponding to bins

below this are classified as “weak” and their gradient value is set to

zero. Figure 4c shows the result of this technique; the pixel locations

corresponding to the background and reflective surfaces have been

eliminated, leaving behind pixel locations corresponding to the most

prominent features of the spacecraft.
Algorithms relying on the Hough transform require the tuning of

hyperparameters such as the expected minimum length of line

segments and the expected maximum gap between two points to be

considered in the same line segment. This makes these algorithms

unsuitable for broad applicability because these parameters need to

Fig. 4 Steps of weak gradient elimination: a) gradient detection of original image, b) histogram of normalized gradient values and exponential PDF
approximation, and c) output filtered image gradients.

Merge Streams
Gaussian Filter

Hough Transform Merge Edge 
Segments

Weak Gradient 
Elimination

Hough Transform

Feature Detection

Antennas
Feature Synthesis

Open Polygons

Parallel Triad

Toward 
Pose 

Estimation

Fig. 3 Main steps of the image processing subsystem with a single 2-D image as the input and feature groups as the output.
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be varied for different imaging scenarios [40]. To overcome this

challenge, theWGE technique allows for an adaptive computation of

these hyperparameters through the detection of a rectangular ROI

around the target spacecraft in the image. The limits of the rectangular

ROI are determined independently in each of the two axes of the

image. To build the ROI, the cumulative distribution function (CDF)

of the filtered image gradient obtained from the WGE is determined

along the two image axes, as seen in Fig. 5. Assuming the filtered

image gradient is normally distributed, the coordinates of the ROI are

determined by axes positions corresponding to CDFs of 0.025 and

0.975 (therefore, only the central 95% of the normal distribution is

considered).
To extract line segments corresponding to small spacecraft features,

the Hough transform is applied to the binary image of the filtered

gradient. The required hyperparameters of the Hough transform

(namely, the expected minimum length of the line segments lmin;Hough

and the maximum gap between two points to be considered in the

same line segment λHough) can be calculated as scalar multiples of the

diagonal length of the ROI lROI:

lmin;Hough � κ1 � lROI λHough � κ2 � lROI (5)

The outputs of short line segments are stored and later mergedwith

the line segments belonging to large features. The scalars κ1 and κ2
can be empirically estimated in a simulation on ground before the

mission or can be estimated on board using prior knowledge of the

interspacecraft range based on an angles-only navigation phase [41].
An innovative feature of theWGE technique is its ability to provide

a coarse relative position solution even before the pose determination

subsystem. Figure 6 shows that the knowledge of the diagonal

characteristic lengthLC of the spacecraft 3-Dmodel and the diagonal

length of the detected ROI lROI can be used to obtain the position of
the target spacecraft relative to the camera frame tC. In particular, the
range to the target spacecraft from the origin of the camera frame is

ktCk2 �
��fx � fy�∕2�LC

lROI
(6)

where fx and fy denote the focal lengths of the camera. Azimuth and

elevation angles �α; β� from the origin of the camera frame C to the

origin of the body-fixed coordinate systemB can be derived using the

principal point of the image �Cx; Cy� and the center of the ROI

�Bx; By�:

α � tan−1
�
Bx − Cx

fx

�
(7)

β � tan−1
�
By − Cy

fy

�
(8)

Finally, the coarse relative position solution is given by

tC �

2
664
Cα 0 −Sα
0 1 0

Sα 0 Cα

3
775
2
664
1 0 0

0 Cβ Sβ

0 −Sβ Cβ

3
775
2
664

0

0

ktCk2

3
775 (9)

2. Sobel and Hough

The second stream of the feature detection procedure consists of
the application of the Sobel operator and theHough transform (S&H)
technique [32] to the rectified image. The objective is to easily extract
line segments corresponding to the silhouette of the large components
of the spacecraft. Any line segment for which themidpoint lies outside
the ROI detected from the WGE technique is rejected. The Hough
transform hyperparameters are calculated as

lmin;Hough � κ3 � lROI λHough � κ4 � lROI (10)

Note that, instead of manually tuning the Hough transform
hyperparameters for each image separately, the hyperparameters are
adaptively computedbasedon the scalarmultiples κ3 and κ4.Due to this
formulation of the Hough hyperparameters, the proposed straight line
segment extraction is largely robust to the interspacecraft separation.
The hypothesis is that, as the target spacecraft gets closer to the camera,
the expected lengths of its edges in the imageplane are expected to grow
proportionally to the size of the detected bounding box. Hence,

Fig. 5 ROI detection process: a) cumulative population of strong gradients along the two image axes and b) output ROI.

Fig. 6 Calculation of a coarse relative position solution using the WGE
technique.
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the determination of parameters κ3 and κ4 needs to occur just once: for
example, in an offline phase before the mission.

3. Merging Edges

The output line segments from the Hough transform often

correspond tomultiple and truncated edges. In Fig. 3, edge 4 and edge
5 obtained from theHough transform correspond to the same true line
segment. To resolve this issue, similar line segments aremerged into a
single line segment. For example, consider two line segments, l1 and
l2, expressed in the polar form as shown in Fig. 7a:

l1:ρ1 � x cos θ1 � y sin θ1 (11)

l2:ρ2 � x cos θ2 � y sin θ2 (12)

The condition of similarity is that jθ1 − θ2j < θthresh and
jρ1 − ρ2j < ρthresh. Furthermore, the Euclidean distance between the
farthest pair of endpoints of the two line segments must be less than
dthresh. The parameterdthresh is adaptively computed for each image as

half of the mean length of the detected edge segments, whereas the
parameters θthresh and ρthresh are set equal to the resolution of θ and ρ
in the Hough space. If the similarity condition is verified, the two line
segments are replaced with l3, which is the line segment defined by
the farthest pair of endpoints of the line segments, as shown in Fig. 7b:

l3:ρ3 � x cos θ3 � y sin θ3 (13)

4. Merging Streams

The final step of the feature detection procedure is tomerge the line
segments detected with the WGE and S&H techniques. Only unique
line segments are output from each of the two streams before
merging. This uniqueness check resolves the issue of detecting
repeated edges as encountered in previous work [31]. Pairs of close

and similar line segments are detected in the output of both the
streams separately, and only the longer line segment from the pair is
preserved. Using the example of the pair of line segments l1 and l2
from Eqs. (11) and (12), the longer line segment is retained if

jθ1 − θ2j < ~θthresh, jρ1 − ρ2j < ~ρthresh, and the Euclidean distance
between themidpoints is less than half of the length of the longer line

segment. The parameters ~θthresh and ~ρthresh can be tuned to a certain
threshold or expressed as functions of the size of the ROI.
The results of the two streams are combined, taking into account

the cases where short line segments detected from the WGE
technique overlap or intersect with the large line segments output

from the S&H technique. Pairs of line segments from the two streams
are compared, and we check whether they intersect. If they do
intersect, then assuming the shorter line segment is divided into two
portionswith lengthsL1 andL2 (whereL1 < L2), only the longer line
segment is preserved if L1∕L2 > 0.25.

B. Feature Synthesis

The objective of feature synthesis is to organize the extracted line
segments into higher-level features to reduce the search space of

the correspondence problem, i.e.,matching features of themodel to the
features in the image. Given n points in the image andm points in the
3-Dmodel, the number of possible correspondences and, equivalently,
the number of hypothetical pose solutions are given by�

m
6

��
n
6

�
6!

Note thatweneed at least six correspondingmodel and image points
to guarantee a unique solution of the PnP problem [34]. However,
more constraints can be generated using the knowledge of the 3-D
model and by organizing the points into higher-level groups. For
example, if four of these image points belong to a polygonal feature
such as a solar panel, then a unique solution can be found using
just four correspondences. This drastically reduces the number of
possible correspondences to 8mplanarnplanar, where mplanar and nplanar
are the numbers of four-sided polygonal features of the 3-Dmodel and
the image, respectively. Therefore, the key idea is to solve the
correspondence problem using just a small number of higher-level
feature groups instead of using a large number of feature points.
In this implementation of feature synthesis, the detected line

segments are organized into fivegroups, namely, parallel pair, proximal
pair, open polygonal triad, parallel triad, and closed polygonal tetrad.
These groups are built using relations that are preserved over a wide
range of camera viewpoints [42], thereby adding robustness to the
proposed architecture. Moreover, these groups can be easily and
quickly found from the detected line segments by examining just a few
geometric constraints, as observed in Fig. 8. For example, two
segments compose a proximity pair if they satisfy the condition

d12 ≤ dmax (14)

where d12 is the shortest distance between endpoints, and dmax is a
threshold value in pixels. Similarly, two segments compose a parallel
pair if they satisfy the condition

θ12 � kθ1 − θ2k ≤ θmax (15)

whereθ1 andθ2 are the line segment slopes, andθmax is a thresholdvalue
indegrees. If twogroupsofproximity pairs share a line segment, theyare
categorized as an open polygonal triad if they satisfy the condition

�P1a − P3a� ⋅ �P1b − P3b� > 0 (16)

This ensures that the endpoints of the noncommon line segments lie
on the same side with respect to the shared line segment. If two open
polygonal triads are foundwith two shared line segments, then they are
categorized as a closed polygonal tetrad. Similarly, if two parallel pairs
are found with a shared line segment, they are categorized as a parallel
triad. Finally, any line segments that were detected through the WGE
technique feature detection streambutwere not detected from the S&H
feature detection stream are classified as antennas if the length of the
segment is less than one-third of lROI. This particular threshold can be
easily tuned before the mission as the 3-D model of the target
spacecraft is assumed tobe available.As for the 3-Dmodel of the target
spacecraft, the same groups can be precomputed using the same
conditions before the mission. Figure 9 shows the results from the
application of feature synthesis routine on some actual space imagery
from the PRISMA mission.

IV. Pose Determination

The position and attitude of the target spacecraft are determined by
solving the 3-D/2-D perspective projection equation for RBC and tC.
Because this requires corresponding image and 3-Dmodel points, the
detected feature groups must be first matched with the corresponding
feature groups of the model. Notably, several possible combinations
between the image and correlated model features must be considered
because the exact correspondences are unknown. The 3-D/2-D true
perspective projection equation is then solved for each combination
of feature correspondences using the EPnP method [26]. The best
pose candidates are refined through a Newton–Raphson algorithm in

x
1

2

y

l 2 l3

p2B

p2a

p1a

p1b

a) b)

x

y

p2B

p1a

l2

θ
3θ2θ

ρ
3

ρ1
ρ

l1 l1

Fig. 7 Merging of two truncated edges: a) original edges, and b) output
merged edge.
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order to output a single pose solution. Figure 10 presents the pose

determination subsystem, and the following subsections discuss its

main steps in detail.

A. Feature Correspondence

The correspondences between the image points and the 3-Dmodel

points are obtained by pairing each feature group detected in the

image with each analogous group of the 3-D model of the target

spacecraft. For eachmatching feature group pair, the endpoints of the
line segments in the image are hypothesized to correspond with the
endpoints of the 3-Dmodel’s lines through simple combinations. For
instance, a closed polygon identified in the image is coupled with
every closed polygon of the model. This provides eight different
combinations of the point correspondences between the closed
polygon detected in the image and the closed polygon of the 3-D
model. This approach is applied to all the feature groups considered
in the feature synthesis in Sec. IV.

2

3

a) b) c)

d) e) f)

1

3
4

3

5 7

1

2

3

7

1 2

1

2

4

45

6

Fig. 9 Intermediate results from synthesis of detected line segments into higher-level features: a) proximal pair, b) open polygonal triad, c) closed
polygonal tetrad, d) parallel pair, e) parallel triad, and f) antennas.

1

2

d12

a) b) c)

1

2

d12

3

d13

d13

P3a

P3b

P1a

P1b

P2a

P 2b

1

2

d12

3

4
d34

d24

1

2

12

12

13

d) e)

1

2

3

Fig. 8 Synthesis of detected line segments into higher-level features: a) proximal pair, b) open polygonal triad, c) closed polygonal tetrad, d) parallel pair,
and e) parallel triad.

Image 
Processing Feature Groups

Match Matrix 
Using Point 

Correspondences

PnP Problem 
Using EPnP

Reprojection 
Error 

Pose Refinement 
with NRM

Spacecraft 
3-D Model Feature Groups

Fig. 10 Main steps of the pose determination subsystemwith feature groups from the image and the 3-Dmodel as input and a single pose solution as the
output.
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The point correspondences between the image and the 3-D model
are stored in the so-called match matrix, which is then input to the
EPnP method [26]. The rows of the matrix represent the different
hypotheses for feature correspondence, whereas the columns store
the corresponding 3-Dmodel and 2-D image points.EPnP requires at
least six point correspondences to guarantee a unique pose solution from
Eqs. (1) and (2) [43], whereas a single feature group typically provides
less than six (seeTable1).Therefore, thepoint correspondences fromthe
feature groups are combined with the point correspondences provided
by the antennas feature group to form at least six point correspondences.
Note that the decision to combine point correspondences from complex
feature groups with point correspondences from the antennas feature
group is a design choice because the Tango spacecraft has five
prominent antennas visible from most viewing angles. For other
spacecraft where antennas are either not present or prominent, point
correspondences from other complex feature groups may be used to
form at least six point correspondences. The feature groups are ranked
according to their geometric complexity as follows (in descending
order): closed polygonal tetrad, open polygonal tetrad, parallel triad,
proximal pair, and parallel pair. To build the match matrix, only the
most geometrically complex feature group detected in that image is
considered. Table 1 shows the number of rows in the matchmatrix for a
typical scenario where at least three antennas are detected. Building
the match matrix in this manner has two main advantages: first, the
probability of an accidental detection of the higher geometric
complexity group is less than that of the lower geometric complexity
group [42]; and second, the higher the geometric complexity of the
feature group, the lower the number of possible correspondences
between the image and the 3-D model features.
Unlike most previous algorithms to hypothesize feature

correspondence, not all possible featurematches are treated identically.
Instead, a small set ofmatches is hypothesized and thenverified. This is
in stark contrast to view-based approaches where image features were
compared with precomputed 2-D views of the object to determine the
object pose [44–47]. These approaches tried to deal with the full
geometric search space by clustering the views. None of these are
practical for the constrained space-hardened hardware due to their
extremely large geometric search space.

B. EPnP

Each combination of feature correspondences stored in the match
matrix is employed to solve the 3-D/2-D perspective equation using
the EPnPmethod [26]. Notably, EPnP is chosen among state-of-the-
art algorithms because it ensures rapid convergence and robustness to
image noise and feature outliers [43].
The key concept of the EPnPmethod is its use of four noncoplanar

unknown control points: cC1 , c
C
2 , c

C
3 , and c

C
4 . Let n be the number of

correspondences between the image andmodel features. Eachmodel
point can be expressed in the camera coordinate system C as a linear
combination of the control points according to

rCi �
X4
j�1

γijc
C
j i � 1; 2; : : : ; n (17)

In the ideal case, each feature point qi � �ui; vi� detected in the
image coincides to the corresponding model point pB

i projected onto
the image. Notably, this yields to

ui �
xCi
zCi

fx � Cx i � 1; 2; : : : ; n (18)

vi �
yCi
zCi

fy � Cy i � 1; 2; : : : ; n (19)

where rCi � �xCi ; yCi ; zCi � is the model point written in the camera
coordinate system and obtained from pB

i using Eq. (1). By
substituting Eq. (17) into Eqs. (18) and (19), we obtain the following
linear equations for each pair of features:

X4
j�1

γijfxc
C
xj �

X4
j�1

�Cx − ui�γijcCzj � 0 i � 1; 2; : : : ; n (20)

X4
j�1

γijfyc
C
yj �

X4
j�1

�Cy − vi�γijcCzj � 0 i � 1; 2; : : : ; n (21)

This linear system of 2 × n equations is solved for the 12 unknown
parameters that are the components of the control points cC1 , c

C
2 , c

C
3 ,

and cC4 . Therefore, at leastn � 6 correspondences between the image
andmodel features are required to obtain the solution. The pose of the
target is then retrieved using Eqs. (1) and (17).
The EPnP algorithm is applied to each combination of feature

correspondences defined in the match matrix. The reprojection error

is the Euclidean distance between image features and corresponding
model points projected onto the image, which is mathematically
expressed as

E2D � 1

n

Xn
i�1

������������������������������������������������������������������������������������������������������
ui −

�
xCi
zCi

fx � Cx

��
2

�
�
vi −

�
yCi
zCi

fy � Cy

��
2

s

(22)

Notably, rCi � �xCi ; yCi ; zCi � is computed from the model feature

point pB
i using Eq. (1).

C. Pose Refinement

The best five pose solutions in terms of their solution error
[Eq. (22)] are used for pose refinement. The first step of this procedure

is to solve the 3-D/2-D perspective projection equation using the
Newton–Raphsonmethod (NRM) [31] using each pose solution as the
first guess. For each feature correspondence, the following fit error
between the detected image feature and the projected model point is

defined:

Ei �
�
ui −

�
xCi
zCi

fx �Cx

�
; vi −

�
yCi
zCi

fy �Cy

��
i� 1;2; : : : ; n

(23)

where rCi � �xCi ; yCi ; zCi � is obtained frompB
i usingEq. (1).The fit error

in Eq. (23) has six unknown parameters of x � �tC; θBC�, where θBC is
the Euler angles sequence that defines the rotation matrix RBC.

Table 1 Expected number of rows in the match matrix (column 5) based on the most geometrically complex feature
group detected in the image (column 1)

Feature group
Number of points
per feature group

Number of feature
groups in image

Number of feature
groups in 3-D model

Number of rows
in match matrix

Closed polygonal tetrad 4 ϕa ϕ 0
a 8ϕaϕ

0
aϕfϕ

0
f

Open polygonal tetrad 4 ϕb ϕ 0
b 8ϕbϕ

0
bϕfϕ

0
f

Parallel triad 6 ϕc ϕ 0
c 24ϕcϕ

0
c

Parallel pair 4 ϕd ϕ 0
d 8ϕdϕ

0
dϕfϕ

0
f

Proximal pair 3 ϕe ϕ 0
e 2ϕeϕ

0
eϕfϕ

0
f

Antenna 1 ϕf ϕ 0
f ——
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Because each feature correspondence provides two conditions, at least
three matches between detected corners and projected features are
required to solve the system of equations defined by the fit errors. Let
n ≥ 3 be the number of correspondences between the image andmodel
features. The system of 2 × n equations that must be solved for x is
given by

Es �

2
664

E1

: : :

En

3
775 (24)

TheNRMsolves this systemof equations by iteratively updating the
solution as

xk�1 � xk − �JTJ�−1JTEs�xk� (25)

whereEs�xk� is evaluated using Eq. (24) at xk, andJ is the Jacobian of
the system:

J � ∂Es

∂x
�

2
66664
∂q1
∂rC1

∂rC1
∂tC

∂q1
∂rC1

∂rC1
∂θBC

: : : : : :

∂qn
∂rCn

∂rCn
∂tC

∂qn
∂rCn

∂rCn
∂θBC

3
77775 (26)

The partial derivatives in Eq. (26) are obtained fromEqs. (1) and (2)
and are given by the following:

∂q
∂rC

�

2
6664
fx
zC

0 −
fxx

C

�zC�2

0
fyy

C

zC
−

fy
�zC�2

3
7775 (27)

∂rC

∂tC
� RBCpB (28)

∂rC

∂tC
� ∂RBC

∂θBC
pB (29)

The iterative routine stops when either the improvement of the
solution achieves the tolerance or the number of iterations reaches the
maximum number. By applying the NRM to each of the selected best
solutions generated byEPnP, new pose solutions are obtained. This set
of solution candidates is used to project the 3-D model using the
painter’s algorithm. A nearest-neighbor search is employed to match
the endpoints of the line segments detected in the image with the
endpoints of the projected model’s line segments. The output pose
solution is the one that minimizes the reprojection error [see Eq. (22)].
Because the reprojection error is a measure of how well the pose
solution “fits” the detected image features, it can be used as a
confidencemetric.A “high-confidencepose”will generally have avery
low reprojection error as compared to a “low-confidence pose.” This
allows the proposed architecture to be run on successive images until a
threshold reprojection error is met.

V. Validation

The SVD architecture and its constituent subsystems are
independently tested on the imagery collected during the PRISMA
mission [33] to evaluate their performance and quantitatively compare
their strengths and weaknesses against the state-of-the-art methods.
The 3-D wireframemodel used in this validation effort is illustrated in
Fig. 11. This model is derived by reducing a high fidelity computer-
aided design model of the Tango spacecraft [31] to only contain a low
number of features. The set of features present in this model is selected
to reduce possible pose ambiguities (by maintaining geometric
asymmetry) and to reduce the number of feature correspondence

hypotheses during pose determination. It consists of a polygon
representing the solar panel (560 × 750 mm) and a convex polyhedron
representing the spacecraft body (560 × 550 × 300 mm). Five
additional segments (204 mm) represent the radio-frequency antennas.
The origin of the body frame is located at the center of the bottom face
of the spacecraft body. The model is input in MATLAB as a
stereolithographic file fromwhich information about surfaces and edges
is generated. Notably, the same feature synthesis groups introduced in
Sec. IV can be extracted from the 3-D model using the same condition
checks and functions. We detected 16 proximal pairs, 18 parallel pairs,
12 parallel triads, 6 closed polygonal tetrads, 6 open polygonal tetrads,
and 5 antennas from the 3-D model.
In the tests that used datasets containing PRISMA imagery, flight

dynamics products from the PRISMA mission [48] have been used
for performance evaluation. Specifically, onground precise relative
orbit determination based on theGlobal Positioning System (accurate
to about 2 cm 3-D rms) [48] is used as the “true” relative position,
and an onboard coarse attitude estimate from the sun sensors and
magnetometers (accurate to about 3° 3-D rms) [31] is used to calculate
the true relative attitude.The accuracy in the estimated relative position
is evaluated by the following translation error:

ET � jtCtrue − tCestj (30)

which represents the elementwise absolute difference between the
position tCtrue of the client obtained from the flight dynamics products
and the position tCest provided by the pose solution. Similarly, the
accuracy of the attitude solution of the target vehicle is evaluated
through the Euler angle representation of the rotational error

ER�Rdiff� � �ϕ; θ;ψ� (31)

where Rdiff is a direction cosine matrix representing the relative
rotation between the true value and the estimate value of RBC:

Rdiff � RBC
est �RBC

true�T (32)

Geometrically, ϕ, θ, and ψ represent the errors in the estimated
attitude about the directionsC1,C2, andC3, respectively. As shown in
Fig. 1, the directionC3 is pointed along the boresight, whereasC1 and
C2 are aligned with the image frame P. Lastly, the reprojection error
E2D, of the final pose estimate is calculated using Eq. (22) and is
reported in pixels. The reprojection error quantifies how closely the
final pose estimate recreates the features detected in the image. Table 2
presents the purpose, the image datasets, and themethods used during
the four tests conducted as part of the validation effort. The following
subsections present a detailed account of these four tests.

A. Test 1

This test compared the performance of state-of-the-art feature
extractors with that of WGE using a dataset of 142 images from
the PRISMA mission (referred to in Table 2 as PRISMA-142).

z  
y  x  

600

400

2000

100

400

X [mm]

0

Z
 [m

m
]
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200

300

-200
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0
-400-200
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Fig. 11 3-D wireframe model of the Tango satellite.
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The image processing subsystem is required to output pixel locations

of edge endpoints that correspond to line segment endpoints of the

3-D model. This can be achieved either through 1) coupling edge

detectors such as Sobel [32], Canny [36], and Prewitt [39] with the

Hough transform; 2) using corner detectors such as features from

accelerated segment test (FAST) [49]; or 3) using key-point detectors

such as binary robust invariant scalable keypoints (BRISK) [50]. The

true positive rate (TPR) and positive predictive value (PPV) were

calculated for each image in PRISMA-142 as

TPR � Number of true positives

Number of true positives� Number of false positives
⋅ 100

(33)

PPV � Number of true positives

Number of true positives� Number of true negatives
⋅ 100

(34)

The ground truth for the edge endpoints were manually annotated

on the images. A pixel location outputwas classified as a true positive

if it was within a Euclidean distance of 5 pixels from a true edge

endpoint. All output pixel locations outside this rangewere classified

as false positives. Any true edge endpoint that remained undetected

(i.e., none of the pixel locations output by the feature extractor were

within a Euclidean distance of 5 pixels) was counted as a false

negative.
Figure 12 shows that the WGE achieved a true positive rate of

32.8%, which is the highest among all feature detectors tested,

followed closely by Canny (31.2%) and Sobel (30.4%). However,

WGE has a precision of 21.6% as compared to 1.6% for Canny and

4.6% for Sobel. Moreover, this performance comes at an order of

magnitude less computational time as other edge detectors because

the weak gradient elimination process reduces the number of pixel

locations considered by the Hough transform during feature

extraction. The performance ofWGE is, therefore, far superior to the

feature extraction methods based on edge detection. The mean PPV

value of the WGE in this test was lower than BRISK and FAST;

however, there were zero images where WGE failed to produce a

single true positive as compared to 30 for FAST and 11 for BRISK.
Figure 13 shows that both FASTand BRISKwere a magnitude faster

in comparison to WGE. However, that was expected because WGE

not only detected pixel locations of endpoints but also provided line

segment information (i.e., which endpoints fall on the same edge).

B. Test 2

This test compared the ROI output of the WGE on the PRISMA-

142 dataset with that of the maximally stable extremal regions [37].

The MSER is a blob detector that outputs a list of pixel locations,

whereas the WGE provides a bounding box in the image plane.
Therefore, the pixel location list output by the MSER is first

converted to a list of bounding boxes. Following that, a single (or

multiple in some images) ROI is obtained by applying nonmaximum

suppression (NMS) [51] to the list of bounding boxes. The output of
MSER+NMS and WGE is compared against the ROI ground truth

obtained throughmanual annotation of the images. The PPVandTPR

for each ROI are calculated by classifying their bounded area and

using Eqs. (33) and (34). Figure 14 shows the definitions of the true

positive, false positive, and true negative regions in the image.

Table 2 Description of the tests conducted for the validation and comparison of the SVD architecture against the state-of-the-art methods

Test name Test purpose Image datasets Methods

Test 1 Extraction of line segment endpoints PRISMA-142 FAST [49], BRISK [50], Sobel� Hough [32],
Canny�Hough [36], Prewitt�Hough [39], WGE

Test 2 Detection of region of interest PRISMA-142 MSER [37], WGE
Test 3 Solution of perspective equations PRISMA-5,

Synthetic-5
EPnP [26], ASPnL, LPnL-DLT, LPnL-LS, LPnL-ENull [24],

Ansar and Daniilidis [25],
Mirzaei and Roumeliotis [23]

Test 4 Pose initialization with unknown
feature correspondences

PRISMA-25 WGE� RANSAC [34],WGE� SVD

T
PR

 [
%

]

FAST BRISK Sobel Canny Prewitt WGE

PP
V

 [
%

]

Fig. 12 Mean and standard deviation of the true positive rate and
positive predictive values of the feature extraction algorithms on the
PRISMA-142 dataset.

FAST BRISK Sobel Canny Prewitt WGE

C
om

pu
ta

tio
na

l t
im

e 
[m

s]

Fig. 13 Mean and standard deviation of the computational time required
by the feature extraction algorithms on the PRISMA-142 dataset.

Fig. 14 Class definitions of the area bounded by the region-of-interest
output by WGE andMSER�NMS.
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Figure 15 shows some of the results obtained using WGE and

MSER� NMS on the PRISMA-142 dataset. The mean values of the

TPR and PPVacross all 142 images for WGE were measured as 90.59

and 85.98%, respectively. These values are superior to those measured

forMSER� NMS (meanTPR� 89.45% andmeanPPV� 81.77%).

The mean computational time for MSER� NMS, as measured using

tic-toc on MATLAB running on a 2.4 GHz Intel Core i5 machine,

was 0.4867 s; whereas the mean computational time for WGE was

0.0878 s. Moreover, as seen in Fig. 15,MSER� NMS had a tendency

to producemultiple ROIs per image; conventionally, amachine learning

Fig. 15 Region-of-interest output by WGE andMSER�NMS on a set of four images from the PRISMA-142 dataset.

Noise Standard Deviation = 0 pixels Noise Standard Deviation = 1 pixel

Noise Standard Deviation = 2 pixels

3 4 5 6 7 8
0

0.2

0.4

0.6
Noise Standard Deviation = 3 pixels

Fig. 16 Average success rate of pose solvers as a function of the number of line correspondences. Plots generated using five random poses and different
levels of noise in the projected image.
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algorithm is required to classify whether the ROI contains the object of
interest.However,multipleROIsper imagecouldbeadesirableproperty
if more than one satellite were present in the image. Figure 15 also
exhibits a failure case for WGE, where the curvature of the Earth is
present in the image. The output of WGE is biased because the horizon
represents a sharp change in image intensity.

C. Test 3

This test compares the output of several perspective equation
solvers to select one that is both accurate and computationally fast.
In particular, the attitude and translation output of several PnL
algorithms (ASPnL [24], LPnL [24], Ansar and Daniilidis [25], and
Mirzaei andRoumeliotis [23]) is compared againstEPnP [26], which
is a PnP solver. The test only considers a single PnP solver because
EPnP has been shown to have superior performance in comparison to
other PnP solvers [43]. This test employs the use of two datasets. The
first dataset contains five synthetic images that are generated by
projecting the 3-D model of the spacecraft (see Fig. 11) onto the
image plane using randomposes. For each image, the PnL solvers are
tested on different combinations of line correspondences. To create
the combinations, several sizes of combinations are consideredandeach
solver is tested on all possible combinations of line correspondences of
that size. Unique line segment endpoints are selected from the line
correspondences as input for theEPnP. The seconddataset contains five
actual images of the Tango spacecraft acquired during the PRISMA
mission [33]. Line correspondences between the image and the 3-D
model are manually selected, and each algorithm is tested on several
combinations of correspondences. To compare the output of the pose

Table 3 Accuracy and computation runtime of
the pose outputs from EPnP and LPnL-ENull

Algorithm kETk2, m kERk2, deg Runtime, ms

EPnP 0.23 2.7 3.0
LPnL-ENull 0.30 8.1 3.5

0
3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

Fig. 17 Average success rate of the pose solvers as a function of the
number of line correspondences. Plots generated using five images from
the PRISMA mission. DLT: direct linear transform.

Fig. 18 Pose initialization results using the SVD architecture.
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solvers, a success rate based on the number of “correct” pose outputs is

calculated. In particular, the success rate is the fraction of pose outputs

that have kETk2 < 30 cm and kERk2 < 10 deg.
Figure 16 shows the success rate of the pose solvers tested on the

dataset of synthetic images. Measurement noise due to the image

sensor characteristics is simulated by adding Gaussian noise with

zero mean and varying levels of standard deviation to the input of the

pose solvers. EPnP was found to have the highest success rate for

every size of input correspondence and noise level. The reason of the

poor performance of perspective-n-line algorithms (PnL) solvers is
that these solvers require a large number of line correspondences to

solve the PnL problem and they are very sensitive to noise, especially

when few correspondences are provided. This result is not surprising

because other authors have only demonstrated satisfactory results of

PnL solvers with at least 10 line correspondences [24]. However,

the performance of EPnP also degenerates with increasing levels of

measurement noise.

Figure 17 shows the performance of the pose solvers tested on the
dataset of five real images from thePRISMAmission.Similar to the test
cases of the synthetic dataset,EPnPwas again found tohave the highest
average success rate for all sets of feature correspondences. Note that
the failure cases of EPnPwith three- and four-feature correspondences
are due to the fact that coplanar point correspondences may lead
to multiple pose solutions [52]. In cases where both EPnP and
LPnL-ENull produced a correct pose solution, their accuracy (using
kETk2 and kERk2) and computational runtime (using MATLAB
commands tic and toc) weremeasured for comparison.As summarized
in Table 3, EPnP offered a superior performance in terms of both pose
accuracy and runtime. For these reasons, EPnPwas chosen as the pose
solver in the proposed pose initialization architecture.

D. Test 4

This test compares the pose estimate of the proposed pose
initialization architecture based on the use of feature groups, with one

Fig. 19 Pose initialization results using the RANSAC architecture (showing the 3-D model projected on the image plane using the pose solution).

Table 4 Accuracy of the pose solutions provided by SVD and RANSAC on the PRISMA-25 dataseta

SVD solution type Number of images Method ER, deg ET , m

High-confidence pose 5 SVD (−0.57, 0.59, −1.37) (0.14, 0.06, 0.51)

RANSAC (29.84, 7.52, −17.87) (0.46, 0.52, 1.94)

Low-confidence pose 7 SVD (−23.56, −0.67, 16.78) (0.18, 0.005, 0.75)

RANSAC (75.66, 2.18, −22.16) (0.28, 0.35, 1.13)

Relative position only 13 SVD —— (0.07, 0.03, 0.51)

RANSAC (−10.04, −2.11, 23.41) (0.24, 0.48, 1.38)

aValues of ER and ET are mean values computed across the different images belonging to the particular solution type.
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based on the use of RANSAC [34]. In particular, the test highlights
the advantages and disadvantages of handling unknown feature
correspondences through feature synthesis as compared to random
hypotheses. RANSAC randomly samples three edges from the image
and three line segments from the 3-D model, and their provides their
endpoints to EPnP for a pose solution. This pose is then verified
by projecting the 3-D model on the image plane and counting the
number of “inlier” edges that agree with it, i.e., the number of
detected edges that are closer than a predefined threshold to the
corresponding projected edges. The pose solution with the highest
number of inlier edges is output after k randomhypotheses. Thevalue
of k is governed by

k � log�1 − p�
log�1 − �w∕mn�6� (35)

where p is the probability of randomly drawing a correct sample of
corresponding 3-D model and image feature points,w is the number
of detected image feature points that correspond to at least one 3-D
model point, and m and n are the total number of 3-D model and
image feature points, respectively. In case two pose solutions have the
same number of inlier edges, the solution that has a lower median
Euclidean distance between the inlier edge endpoints and their
corresponding projected edge endpoints is chosen. For a consistent
comparison of RANSAC with SVD, both architectures used point
features from the same image processing subsystem. A dataset of 25
images from the PRISMAmissionwere used in this test, and the pose
estimates from the two architectures were compared against the
PRISMA flight dynamic products to calculate ER and ET .
Figures 18 and 19 visualize the pose solutions computed by SVD

and RANSAC, respectively; whereas Table 4 presents the attitude
and translation accuracy of the solutions. In particular, Table 4
presents the mean and standard deviation of ER and ET for the three
classes of pose solutions provided by SVD. As seen in Fig. 18, SVD
produced high-confidence pose solutions for images 1–5, low
confidence solutions for images 6–12, and relative position solutions
only for images 13–25. For images 6–25, Fig. 18 also shows the ROI
detected byWGE. The architecture using RANSAC produced a pose
solution for all 25 images; however, the accuracy for these solutions
was lower as compared to SVD.As seen in Fig. 19, the pose solutions
by RANSACwere successful in aligning the detected edges with the
line segments in the 3-D model, producing meter-level relative
position accuracy. However, in general, this alignment of edges does
not guarantee a correct relative attitude solution, as is visible in
Fig. 19 and Table 4. In contrast, the SVD architecture provided a
high-confidence pose solution for five images, a low-confidence pose
solution in seven images, and only a relative position solution for 13
images. The SVD high-confidence pose solutions had decimeter-
level relative position accuracy and degree-level relative attitude
accuracy. In comparison, the relative attitude accuracy for the SVD
low-confidence pose solutions was poor due to the geometric
ambiguity resulting from the low number of attitude distinguishing
features detected. For example, due to the geometry of the Tango
spacecraft, it was impossible to distinguish between two attitude
solutions that were mirrors of each other if only a single polygonal
tetrad and an antenna were detected. In these cases, the correct
attitude solution was found to always be part of the set of top five

solutions input to theNRMduring the pose determination subsystem.
However, after theNRM, the reprojection error of the correct solution
was almost equal but slightly lower than the output solution. Lastly,
SVDdid not produce an attitude solution for 13 images because these
images resulted in a pose solution with a high reprojection error. A
common characteristic of these images was the detection of partial
edges, duplicate edges, and the detection of edges that were absent in
the 3-D model. Figure 20a shows spurious edges that were detected
due to the presence of the horizon,which did not get eliminated by the
WGE technique due to its sharp intensity gradient; Figs. 20b and 20c
show the detection of duplicate edges as well as edges detected from
parts of the spacecraft absent in its 3-D model. For both RANSAC
and SVD architectures, the highest uncertainty in relative position
and attitude solutionswas in theC3 direction, whichwas alignedwith
the camera boresight. The test was run on a 2.4 GHz Intel Core
i5-4570T processor and made use of vectorized implementation of
the SVD pose initialization architecture inMATLAB. TheMATLAB
command tic was used to start a stopwatch timer when the image
processing began, whereas the command toc was used to stop the
timer when the pose solution was output. For the 12 images in which
SVD produced a pose solution, it required 8.2163 s on average. A
majorityof the runtimewas spent in solving the feature correspondence
problem, which was to be expected because the architecture did not
rely on an a priori guess of the pose. In comparison, RANSAC required
an average of 13.464 s for the same set of 12 images where SVD
produced a pose solution.

VI. Conclusions

This paper described an architecture for robust model-based pose
initialization of noncooperative spacecraft to enable autonomous
proximity operations. The detailed description of the proposed
techniques was accompanied by a thorough validation effort using
synthetic images as well as actual space imagery from the PRISMA
mission to show the functional applicability and the accuracy
potential. The proposed architecture improved upon the state of the
art by introducing a hybrid approach to image processing by fusing
the WGE technique with the Sobel operator followed by Hough
transform to detect both small and large features of the target
spacecraft. The hyperparameters of the Hough transform were
expressed as scalar multiples of the size of the ROI determined from
the image processing subsystem, thereby alleviating the problem of
manually tuning them for each imagemanually. The scalar multiples
could easily determined using onground simulations or on
board using a prior knowledge of the interspacecraft range from
angles-only measurements. Comparisons with independent flight
dynamics operational products have shown pose accuracy at the
level of 1.5968 deg (3-D rms error) and 0.5322 m (3-D rms error).
Notably, the errors in the translation and attitude in and along
the boresight direction were the largest. On average, the SVD
architecture required 8.2163 s to produce a pose solution when
implemented in MATLAB on a 2.4 GHz Intel Core i5-4570T
processor. Notably, up to 92% of the runtime was contributed by
EPnP calls to determine the correct feature correspondences
between the image and the 3-D model. Therefore, there would be
merit in further developing techniques to detect complex feature

Fig. 20 Example images where the image processing subsystem output contained spurious edges.
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groups; for example, separate Hough transforms could be employed
for each complex geometric shape.
Future work will exploit features from subsequent images to

estimate the pose if a complex feature group is not detected in the first
image. Additionally, the determination of the initial pose at close
range can be aided by the estimation of the relative orbit through
azimuth and elevation angle measurements made at far range.
Moreover, once the pose is determined for the first image, it will be
used as an initial guess for the pose in subsequent images. This will
lead to a dramatically lower computational runtime for these images
because the expensive step of determining the feature correspon-
dence between the image and the 3-D model does not have to be
repeated. Output of the feature detection is processed to merge any
partially detected line segments, and this has vastly improved the
quality of edge detection as compared to previous work; however,
further improvements must be made because it is still susceptible to
producing spurious edges. This leads to the architecture producing no
relative attitude solution for 13 out of 25 PRISMA images. Hence,
methods for image processing using alternative features types must
be explored to make it more robust. Finally, future work will
incorporate the use of simulated test imagery and hardware-in-the-
loop experiments to train and evaluate the SVD pose initialization
architecture.
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