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Abstract—In the search and rescue efforts soon after disaster
such as floods, the time critical activities of survivor detection
and localization can be solved by using thermal long-wave
infrared (LWIR) cameras which are more robust to illumination
and background textures than visual cameras. This particular
problem is especially challenging due to the limited computational
power available on-board commercial drone platforms and the
requirement of real-time detection and localization. However, the
detection of humans in low resolution infrared imagery is possible
due to the few hot spots that appear due to the heat signature.
We propose a two-stage approach for human detection in LWIR
images: (1) the application of Maximally Stable Extremal Regions
(MSER) to detect hot spots instead of background subtraction
or sliding window and (2) the verification of the detected hot
spots using Integral Channel Features (ICF) based descriptors
and a Naive Bayes classifier. The approach is validated by testing
on an LWIR image dataset containing low resolution videos in
real-time. The approach is novel since it achieves high detection
rates while possessing a low computational runtime, and unlike
several related works in human detection, without assuming that
the targets are moving in the image frame.

I. INTRODUCTION

Survivor detection and localization is an important part of
search and rescue efforts immediately following disasters such
as floods. Autonomous Unmanned Aerial Vehicles (UAV) in
conjunction with digital image processing can assist rescue
efforts by quickly scanning for large swaths of areas and
alerting first responders. However, achieving a high true pos-
itive rate with low false positive and false negative rates is
challenging due to the limited computational power available
on-board, low resolution imagery, and changing background
as well as illumination conditions. Use of long-wave infrared
(LWIR) imagery is suitable for this application since humans
have a distinct heat signature compared to the background
and the imagery does not suffer from changing illumination
conditions. In Figure 1, a side-by-side comparison of LWIR
and visual imagery is shown to exhibit the robustness of LWIR
imagery to shadows. The variation in the image intensities
of humans in LWIR imagery across different cameras is
much less compared to the variation across visual cameras.
This allows us to use simpler detection algorithms which do
not need to normalize the image intensities to form feature
descriptors.

In this paper, I propose an approach described by Teutsch
et al. [1] for detection and localization of humans in LWIR
imagery captured by a camera mounted on a UAV. In contrast

Fig. 1. Comparison of the images captured by a visual camera (left) and
an LWIR camera (right) of the same scene. Note the humans in the yellow
circles.

to other papers, this approach avoids the constraints such as
the assumption of a stationary camera or known backgrounds.
The approach has two stages: in the first one, Maximally
Stable Extremal Regions (MSER) are used to detect hot spots
and normalize the size each region to 16 x 32 pixels. In the
second one, humans and clutter are classified using machine
learning algorithms. In particular we use descriptors based on
Integral Channel Features which are then classified by three
different machine learning algorithms. Validation is done using
the OTCBVS dataset acquired by stationary cameras.

The remainder of the paper is organized as follows: litera-
ture related to human detection in LWIR images is reviewed
in Section 2. Hot spot detection is described in Section 3 and
classification in Section 4. Experimental results are given in
Section 5. We conclude in Section 6.

A. Related Work

The approaches reviewed in context of human detection
in LWIR imagery usually deal with simplifying constraints
such as assuming stationary camera or detecting only moving
persons [2], [3]. Regions of interest (ROIs) are detected either
with background subtraction [4], keypoint detectors [5], sliding
window [6], or thresholding methods such as MSER [7]. All
approaches except of background subtraction can be applied
with a moving camera.

These ROIs can be verified using machine learning algo-
rithms. Davis and Keck [4] calculate gradient magnitudes in
four different directions and automatically learn a weighted
filter bank using AdaBoost classifier. Li et al. [8] use a combi-
nation of Histogram of Oriented Gradient (HOG) features with
geometric constraints and a linear Support Vector Machine
(SVM) classifier. Leykin et al. [3] model and recognize human



motion after tracking. Teutsch [7] proposes a descriptor based
on Hu moments, central moments, and Haralick features
followed by SVM classification. Jungling and Arens [5] use
Speeded Up Robust Features (SURF) to detect and classify
body parts and assemble them with an Implicit Shape Model
(ISM).

II. HOT SPOT DETECTION

As per the literature for related work, three methods are
applicable for hot spot detection: keypoint detection, sliding
window, and MSER. Keypoint detection is not suitable as
it does not detect many features in low resolution images,
leading to partial or missed detections. Sliding window ap-
proaches are also not suitable as these are computationally
expensive and require searches across multiple scales in an
image pyramid to account for scale changes. Thus, MSER
is pursued as it has low computational requirements and is
robust to low resolution imagery. As learned in class, MSERs
are essentially the result of blob detection based on connected
component labeling. The underlying assumption that allows
us to use MSER in this problem is that the body temperature
of persons in LWIR is higher than the temperature of the
immediate background surrounding the person. Do note that,
this will lead to false detections of cars, trees, and street
lights. Moreover, depending on the homogeneity of the body
temperature, partial MSER detection is possible. Additionally,
adjacent persons could be detected in a single MSER.

MSERs are the result of a blob detection method based
on thresholding and connected component labeling [24]. The
application of MSER detection in this paper follows the
assumption that the body temperature of persons in LWIR
images is generally higher than the temperature of the sur-
rounding background. This is true for many outdoor scenar-
ios. Additional MSERs will be detected for background hot
spots such as warm engines, open windows and doors, or areas
heated up by the sun. Depending on the number and size of
hot spots, merged detections will appear affecting the human
blob shape. We use the following hierarchical MSER approach
in order to handle such merged detections of either several
persons or persons with background. Since the ultimate goal
of the project is to locate as many survivors as possible while
minimizing false positives, we do not distinguish MSERs cor-
responding to merged detections of multiple people. Typical
hot spots detected in LWIR imagery of humans is shown in
Figure 2.

III. HOT SPOT CLASSIFICATION

The purpose of classification is to verify whether the
detected hot spots are originating from humans or not. In
order to achieve reliable classification while maintaining low
computational requirements, appropriate feature descriptors
need to be created. Following that, we can utilize machine
learning algorithms to generate classifiers that can distinguish
between “humans” and “not humans”.

Fig. 2. Typical hot spots detected in LWIR imagery of humans.

A. Features

For search and rescue operations using UAVs, survivors can
appear in a variety of different resolutions depending on their
distance from the camera. We can account for these scale
changes by normalizing the size of each detected hot spot. The
scale of each detected hot spot is scaled to 16 x 32 pixels using
bi-linear interpolation. For each hot spot, we then calculate
descriptors based on Integral Channel Features [9].

These features are based on the gradient magnitudes of
the image. The gradient magnitude can be obtained using the
Sobel operator. For example, the gradient along the x- and
y-axis can be obtained by convolving the MSER image with
Gx and Gy:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

Gy =

−1 −2 −1
0 0 0
+1 +2 +1

 (1)

The magnitudes are calculated along six orientations (at 30
degree intervals between x- and y-axis) which capture the
directional component of the gradient. Additionally, an ap-
proximation of the total gradient magnitude is calculated using

G =
√

G2
x +G2

y (2)

Essentially each 16 x 32 MSER yields seven 16 x 32 gradient
images. Local sums of the image intensities are then calculated
in randomly picked rectangular regions along all seven images
and concatenated to set up the 2000 x 1 descriptor. These local
sums are also know as first-order features. If needed, higher
order features can be calculated by summing randomly picked
local sums but they were not used in this analysis.

B. Classification

Besides the evaluation of state-of-the-art classifiers such as
SVM using different kernel types, we also analyze the Naive
Bayes classifier since SVMs are known to be computationally
expensive and slight changes in pose can make some features
not fit the model anymore leading to poor classification
performance. The Naive Bayes classifier is known to be fast
and provides good classification performance even when the
assumption of conditional independence of the used features



is violated [10]. The Naive Bayes decision boundary is given
by:

classNB(f) = arg max

P (ci) ·
n∏
j

P (fj |ci)

 (3)

where f = (f1, ...fn) is the feature vector, P (ci) is the prior
probability for the class ci with i ∈ 0, 1 and P (fj |ci) is the
likelihood for the feature fj given class ci. The product of
these likelihoods is based on the naive assumption that the
features fj of a descriptor are conditionally independent.

IV. EXPERIMENTAL RESULTS

The dataset is separated in disjoint training and test sets to
enable supervised learning of the classifier models. We use the
dataset provided by OTCVBS [4], which contains 286 images
of 360 x 240 resolution each. The dataset has 10 sequences
corresponding to different videos captured at separate times.
I use the first four as my training set and the last six as the
test set. The ground truth contains bounding box annotations
of the 2814 instances of humans present in the imagery. The
MSER results calculated for the training and test datasets were
labeled manually for person or background MSER. Figure 3
shows some example person and background MSERs in the
four datasets. The appearance of person and background hot
spots varies across and inside the datasets. Note that partial or

Fig. 3. A montage of some of the detected MSERs in the training set used
in the experiments.

merged detections were not considered for classifier training
since we are only interested in complete and distinctly detected
humans in the imagery. For each MSER we calculate each
of the descriptors as discussed earlier and classify it with
three classifiers. We use an SVM with a linear kernel, an
SVM with Radial Basis Function (RBF) kernel, and the Naive
Bayes classifier. All classifier training was done using MAT-
LAB’s Statistics and Machine Learning Toolbox. Moreover,

the hyperparameters kernelScale and boxConstraint
were optimized to minimize five-fold cross-validation loss. In
figure 4, we show the values tried for the hyperparameters and
the corresponding loss. In Figure 5, the Receiver Operating

Fig. 4. Hyperparameter optimization for the liner SVM classifier.

Characteristic (ROC) curves for each classifier are calculated
to exhibit the training results. The Area Under Curve (AUC)
was calculated for a compact presentation of our results. The

Fig. 5. The associated ROC curves for each classifier to exhibit the training
results.

Linear SVM trained on the ICF features performs the best out
the three approaches. As seen in the ROC curves, it correctly



classified more than 99% of the human instances with a False
Positive (FP) rate of 15%. The Naive Bayes performed slightly
worse with a true positive (TP) rate of 98% with a FP rate of
20%. The SVM with the RBF kernel function performed the
worst with 97% TP rate and 30% FP rate.

Finally, the three classifiers were used on the test set and a
few of the resulting images are shown in Figure 6. Note that
were successfully able to detect the humans while avoiding the
hot spots originating from the truck and the emergency pole.
For a more complete real-time demonstration of the Naive
Bayes + ICF approach, please see http://imgur.com/a/znUm6.
The results summarizing the experiments are presented in Fig-
ure 7. We can see that the Naive Bayes classifier trained on the
ICF features had the highest TP rate as well as the minimum
False Negative (FN) rate. This makes this approach the most
desirable for a survivor-detection scenario where detecting all
possible humans is required. However, this approach does
seem to have the highest FP rate. The SVM with the linear
kernel trained on ICF features has the lowest FP rate. We
also tested the same algorithm on an independently obtained
LWIR imagery from a FLIR IR camera. A typical image of
two humans outdoors overlaid with the detections is shown in
Figure 8. The approach was successful in detecting the two
humans in this footage, however, it also picked up a number
of false positives originating from the tiled roof. Moreover, the
bounding box on the human on the right is not of the correct
size as the associated MSER is merging with the relative hot
floor.

V. CONCLUSION

In this project, I followed a two-step approach for detecting
humans in real-time using LWIR imagery captured by a
camera mounted on a UAV. This particular approach focuses
on the low resolution imagery typical of UAV platforms and
utilizes algorithms which can run on the limited computational
power available. The approach is also robust to changing
illumination and background conditions, unlike approaches
relying on visual imagery. The approach consists of MSER
hot spot detection followed by classification using Integral
Channel Features and a Naive Bayes classifier. We also showed
the supremacy of this approach over SVM classifiers trained
on the same features using a linear kernel and the radial
basis function, respectively. However, this approach is prone
to be very slow in high resolution imagery as the number
of MSERs detected in such images can be quite large. The
approach also performs poorly when applied to images with
humans standing on relatively hot surfaces as the MSERs of
the humans and the ground gets merged. Future work on
this problem can include ground plane detection to isolate
the ground MSERs from the human MSERs. This work can
also be extended to include imagery from multiple view-points
while simultaneously tracking the humans to provide a very
accurate and robust count of survivors.

Fig. 6. Test set results obtained from applying the Naive Bayes classifier
trained on ICF features.



Fig. 7. Results after applying the three classifiers to the test set of LWIR
imagery from the OTCVBS dataset.
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Fig. 8. Results after applying the the Naive Bayes classifier to an indepen-
dently obtained imagery from a FLIR IR camera.
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