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This work addresses the comparative assessment of initial pose estimation techniques for
monocular navigation to enable formation-flying and on-orbit servicing missions.
Monocular navigation relies on finding an initial pose, i.e., a coarse estimate of the attitude
and position of the space resident object with respect to the camera, based on a minimum
number of features from a three dimensional computer model and a single two dimen-
sional image. The initial pose is estimated without the use of fiducial markers, without any
range measurements or any apriori relative motion information. Prior work has been done
to compare different pose estimators for terrestrial applications, but there is a lack of
functional and performance characterization of such algorithms in the context of missions
involving rendezvous operations in the space environment. Use of state-of-the-art pose
estimation algorithms designed for terrestrial applications is challenging in space due to
factors such as limited on-board processing power, low carrier to noise ratio, and high
image contrasts. This paper focuses on performance characterization of three initial pose
estimation algorithms in the context of such missions and suggests improvements.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Recent advancements have been made to utilize
monocular vision navigation as an enabling technology for
formation-flying and on-orbit servicing missions (e.g.,
PROBA-3 by ESA [1] , ANGELS by US Air Force [2], PRISMA
by OHB Sweden [3]). These missions require approaching a
passive space resident object from large distances (e.g., 4
30 km) in a fuel efficient, safe, and accurate manner.
Simple modification of low cost instruments (e.g., star
trackers) for high dynamic range can enable accurate
navigation relative to the space resident object. Monocular
navigation on such missions relies on finding an estimate
of the initial pose, i.e., the attitude and position of the
ll rights reserved.

a).
space resident object with respect to the camera, based on
a minimum number of features from a three dimensional
computer model and a single two dimensional image. For
on-orbit servicing missions, this represents the scenario
where the servicing spacecraft is “lost-in-space”. Estimat-
ing the initial pose is especially critical as well as chal-
lenging in the design of a pose estimation system as there
is no a priori information about the attitude and position
of the target. Aside from a 3D wire-frame model of the
space resident object, no assumption on the relative
translational or rotational information is made.

Use of state-of-the-art computer vision techniques
designed for terrestrial applications is challenging in
space. For example, use of feature descriptors such as the
Scale Invariant Feature Transform (SIFT) [4] in pose esti-
mation for space imagery is too computationally expensive
and yields poor results (see Fig. 1). We plot SIFT feature
matches (in green) between two images taken during the
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Fig. 1. Challenges in initial pose estimation using state-of-the-art techniques: pose ambiguity due to geometry (left) and poor feature matching (right).
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PRISMA mission. To obtain correct feature matches, SIFT
relies on high image acquisition rates and low image noise,
both of which are unavailable in these images. Addition-
ally, spacecraft geometry is often highly symmetrical
resulting in ambiguity in attitude determination (see
Fig. 1). Prior work has been done to compare different
initial pose estimators [5,6], but there is a lack of func-
tional and performance characterization of such algo-
rithms in the context of missions involving rendezvous
operations in the space environment.

For the purpose of this comparative assessment, we
focus on a pose estimation architecture (see Fig. 2) based
on points extracted from edge features due to their sim-
plicity and accuracy [7]. As opposed to features based on
color gradients, textures, and optical flow, edges are less
sensitive to illumination changes and can easily distin-
guish boundaries of a spacecraft geometry from the
background in an image.

Source of the 3D model features is a simplified wire-
frame model of the space resident object, assumed to be
either stored on-board the servicing spacecraft or formed
as a structure-from-motion problem which is solved
alongside pose estimation [8]. Source of the 2D features is
an object detection subsystem which processes, extracts,
and describes features from a single image captured by the
on-board navigation camera. A typical model reduction
procedure and object detection subsystem are described
and illustrated later in the paper.

The 3D model features and 2D features are passed into
the initial pose estimation subsystem which generates a
pose estimate without knowing the correspondence of
these features. This is a challenging task without apriori
estimates of the relative motion due to a large search space
for the correct feature correspondence. However, the
search space can be reduced using a method such as per-
ceptual organization [9,10] which detects viewpoint-
invariant feature groupings from the 2D image. These are
then matched to corresponding structures of the 3D model
in a probabilistic manner to create multiple correspon-
dence hypotheses. These correspondence hypotheses need
to be validated to find the correct one. Hence, for each
correspondence hypothesis, n number of 2D and 3D fea-
tures are used to calculate a relative pose by solving the
Perspective-n-Point Problem (PnP) [11]. The resulting pose
estimate is used to create virtual 2D image features by
reprojecting the input 3D model features using true per-
spective projection. A measure of the reprojection error
between the virtual 2D image features and the input 2D
image features is used in validation. This process is
repeated for all hypotheses in order to identify the correct
feature correspondence and subsequently, a correct pose
estimate. Hence, our interest is not in the PnP solvers'
statistical use of a large number of measurements to solve
an overdetermined systems. Rather, it is in their ingenuity
in using a minimal number of points to estimate a coarse
initial pose estimate with a minimal computational effort.

The performance of initial pose estimation hinges on
the solution of the PnP problem. In the above architecture,
a PnP solver could be called multiple times and will be
subject to a wide variety of input from the object detection
subsystem and 3D model reduction. Hence, a PnP solver
should not only be fast and efficient but also more
importantly be reliable and robust to overcome challenges
unique to monocular vision-based navigation in space. In
the remainder of the paper, we first present a formal
problem statement of the PnP problem and then review
state-of-the-art PnP solvers. We then introduce our fra-
mework of assessment of these solvers where a discussion
of simulation input generation, performance criteria, and
test cases is presented. Finally, we present relevant results
from our assessment and conclude with a discussion on
applicability of these solvers in a monocular vision-based
navigation system for on-orbit servicing and formation
flying missions.
2. Review of solution methods

Let qi ¼ ½xi yi zi�T , where i¼ 1;2;…;n, be n 3D model
points in the object reference framework B. Let
pi ¼ ½ui vi 1�T , where i¼ 1;2;…;n, be the corresponding n
image points in the image reference framework P. For a
known camera focal length, f, the PnP problem aims to
retrieve the rotation matrix from frame B to the camera
reference framework C, RBC, and the translation vector
from the origin of frame B to the origin of frame C, TBC:

pi ¼ ½ui vi 1�T ¼
αi

γi
f
βi

γi
f 1

� �T

ri ¼ ½αi βi γi�T ¼ RBCðqiþTBCÞ ð1Þ

Re-writing Eq. (1) using homogeneous coordinates and
representing camera parameters as a matrix K, we would like
to estimate the 3� 4 pose matrix, P, whose first three



Fig. 2. Typical pose estimation architecture with inputs of a spacecraft
3D model and a 2D image and an output of a pose estimate.

S. Sharma, S. D'Amico / Acta Astronautica 123 (2016) 435–445 437
columns represent RBC and the fourth column represents TBC.
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Without loss of generality, we can expand Eq. (2) to
obtain Eq. (3), assuming square pixels in the image sensor,
zero skewness, and zero distortion:

wiui

wivi
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75¼
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0 f 0
0 0 1
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75
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RBCð3;1Þ RBCð3;2Þ RBCð3;3Þ TBCð3Þ

2
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xi
yi
zi
1

2
6664

3
7775

ð3Þ
Eq. (3) has six unknown coefficients as there are six

degrees of freedom in P. Three degrees are required to
describe the relative attitude and three are required to
describe the relative position. Hence, three image points,
i.e., n¼3 will provide six measurements which can be used
to solve six equations in six unknowns. However, there
will be four possible solutions as the conversion to non-
homogeneous coordinates is non-linear. In fact, it has been
shown that a unique solution with a general configuration
of points is only possible with n¼6 [11].

The PnP problem has been systematically investigated in
literature and some of the most commonly used PnP solvers
are PosIt and Coplanr PosIt [12], EPnP [13], OPnP[14], and Lu-
Hager-Mjolsness method [15]. These solvers assume that the
correspondence between model points and observed image
points has already been established. This is not true in our
case which makes the problem of initial pose estimation
especially challenging. Note that even when a unique solution
is theoretically available for the PnP problem, there is no
guarantee that a unique solution actually exists in the case of
symmetrical spacecraft geometries. For example, a PnP solver
can provide six different solutions for a cube with six identical
sides. Hence, we need to carry along multiple solutions of PnP
even when we have more than six measurements due to the
symmetry. State-of-the-art PnP solvers usually take either an
iterative minimization approach or a multi-stage analytical
approach. The multi-stage analytical approaches estimate
coordinates of some or all points in the camera frame and
then solve the problem in 3D space using linear forms of the
perspective Eq. (1). This is done to make computation fast for
large number of measurements at the expense of accuracy for
small number of measurements. Other solvers that utilize
non-linear constraints posed by Eq. (1) tend to be computa-
tionally expensive. The iterative minimization approaches
minimize an error function defined in the image or object
space. They typically take non-linear constraints of Eq. (1) into
account but tend to get trapped in local minima. Four of these
state-of-the-art solvers, namely PosIt, Coplanar PosIt, EPnP,
and the Newton–Raphson Method [16,17] are discussed in
more detail in the following sections to provide analytical
reasoning behind their performance in initial pose estimation.
PosIt, Coplanar PosIt, and the Newton–Raphson Method take
an iterative minimization approach while EPnP takes a multi-
stage analytical approach. Note that we exclude our assess-
ment of the Lu-Hager-Mjolsness method [15] as it is also an
iterative minimization approach which is shown to be
approximately four times slower than the Newton–Raphson
Method [18].

2.1. PosIt and Coplanar PosIt

PosIt [12] requires a minimum of four non-coplanar 3D
model points and corresponding 2D image points for pose
calculation. It approximates true perspective projection
with a Scaled Orthographic Projection (SOP) to form a
coarse estimate of the pose which is then iteratively
improved until convergence to a solution. The algorithm
for PosIt scales both sides of Eq. (3) by 1=TBCð3Þ. Then,
expanding the first two rows yields the following rela-
tionship, where s¼ f =TBCð3Þ:

xi sRBC 1;1ð Þþyi sRBC 1;2ð Þþzi sRBC 1;3ð ÞþsTBC 1ð Þ ¼ ui
wi

TBC ð3Þ
ð4Þ

xi sRBC 2;1ð Þþyi sRBC 2;2ð Þþzi sRBC 2;3ð ÞþsTBC 2ð Þ ¼ vi
wi

TBC ð3Þ
ð5Þ

PosIt initializes with the SOP assumption, i.e.,
wi

TBCð3Þ
¼ 1, so that (4) and (5) can be simplified to linear

equations with only eight unknowns, i.e., sRBCð1;1Þ,
sRBC ð1;2Þ, sRBC ð1;3Þ, sTBCð1Þ, sRBCð2;1Þ, sRBCð2;2Þ, sRBCð2;3Þ,
and sTBCð2Þ. With n ¼ 4, these eight unknowns can be
solved using the eight linear equations formed by writing
(Eqs. (4) and 5) for i¼ 1;2;3; and 4. Then using the

resulting estimate of the pose matrix, the value of
wi

TBCð3Þ
can be updated at the end of each iteration. For each
iteration, the reprojected model points are calculated by
using the current estimate of the pose matrix in Eq. (3). At
the end of each iteration, an improvement score, ΔE, is
calculated by measuring the Euclidean distance between
the reprojected model points of the current and previous
iterations.

ΔE¼
Xn
i ¼ 1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δu2

i þΔv2i

q
ð6Þ

Iterations are stopped if either ΔE falls below 0.1 or
1000 iterations are reached. At low focal lengths or when
the space resident object is close to the camera, SOP is not
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a valid approximation of true perspective projection and
leads to inaccurate solutions. However, we can expect to
see a trend of improvement in PosIt's “performance”
(relative to other solvers) as SOP begins to closely
approximate true perspective projection when the space
resident object is far from the camera.

Coplanar PosIt [19] is a variation of PosIt which exclu-
sively addresses the case of coplanar 3D model points and
corresponding 2D image points. It acknowledges that an
SOP approximation leads to two possible solutions of RBC
due to an additional degree of freedom. This is addressed
by keeping track of the solution with the lower reprojec-
tion error for a given iteration. The reprojection error is the
average Euclidean distance between the measured image
points, pi, and the reprojected model points obtained by
using the estimate pose matrix in Eq. (2). Similar to PosIt,
the solutions are iteratively refined until ΔE of one of the
branches falls below 0.1. A branch of the solutions is dis-
carded if it estimates any of the 3D model points to be
behind the camera. For a given iteration, if the two pos-
sible solutions lie close to each other in the solution space,
only refining the solution with the lower reprojection
error does not guarantee convergence to a solution with
the eventual lower reprojection error. This is a major
shortcoming of Coplanar PosIt and can only be remedied
by sacrificing computational efficiency and tracking all
possible solution branches.

2.2. EPnP

Applicable to both coplanar and non-coplanar 3D
model points, EPnP [20] attempts to find a closed-form
pose solution and requires a minimum of four corre-
sponding model and image points. The main idea is to
express the 3D model points as a weighted sum of four
non-coplanar virtual control points, cj, where j¼ 1;2;3;
and 4, in the object frame B (see Fig. 3). Using a matrix
inversion, the homogeneous barycentric coordinates, αij,
can be computed from the n 3D model points, qi, assuming
arbitrary coordinates of the control points.

qi ¼
X4
j ¼ 1

αijcj ð7Þ

Using Eq. (7), Eq. (3) can be re-written in terms of the
12 unknown control point coordinates in the camera
frame, ½α̂j ; β̂j ; γ̂j �T , where j¼ 1;2;3; and 4:

wiui

wivi
wi

2
64

3
75¼

f 0 0
0 f 0
0 0 1

2
64

3
75X4

j ¼ 1

αij

α̂j

β̂j

γ̂j

2
664

3
775 ð8Þ

By substituting the values of wi from the third row into
the first two rows of Eq. (8), two linear equations are
formed for each corresponding pair of a 3D model point
and an image point:

X4
j ¼ 1

αijf α̂j �αijuiγ̂j ¼ 0 ð9Þ
X4
j ¼ 1

fαijβ̂j �αijviγ̂j ¼ 0 ð10Þ

Hence, the 2n linear equations which result from
writing (Eqs. (9) and 10) for i¼ 1;2;…;n, can be used to
estimate the 12 unknowns in the form of a 12�1 vector, x̂,
by solving a linear system of the form Mx̂ ¼ 0. Note that M
is a 2n�12 matrix formed by arranging the coefficients of
the 2n linear equations. When the image points are perfect
data from a true perspective projection of the model
points, the solution is calculated as a 12�1 vector, x̂, in the
null-space of the 12�12 matrix, MTM. However, the matrix
may have as many as four linearly dependent columns due
to measurement noise and/or the focal length of the
camera. There could be four possible solutions expressed
as linear combination of the eigenvectors of this matrix.
Out of the four possible solutions, the one with the lowest
reprojection error is selected. Typically, this is inaccurate
when the focal length is large and the matrix is poorly
conditioned. In this scenario, even a small amount of
measurement noise could lead to highly inaccurate esti-
mates of the solution.

2.3. Newton–Raphson Method

The Newton–Raphson Method (NRM) [16,17] iteratively
solves the true perspective equations, given by Eq. (1), for
an estimate of the pose. It requires an input guess of the
pose and a minimum of three corresponding 3D model
and 2D image points. For each iteration, the reprojection
error is linearized about the current pose estimate,
x!¼ ½TBC φBC �T . Note that x! is a 6 � 1 vector containing
the three components of the translation vector, TBC (see
Fig. 3), and the three Euler angles, φBC, representing the
rotation from frame B to frame C:

ERE;i ¼
∂pi
∂ri

∂ri
∂TBC

ΔTBCþ
∂pi
∂ri

∂ri
∂φBC

ΔφBC ð11Þ

The derivatives of the perspective equations with
respect to TBC and φBC are evaluated in the form of a
2n�6 Jacobian matrix, J ¼ ½J1; J2;…; Jn�T :

Ji ¼
∂pi
∂ri

∂ri
∂TBC

∂pi
∂ri

∂ri
∂φBC

h i
ð12Þ

For each iteration, the least squares solution by using
the reprojection error from the previous iteration, ERE, and
the Jacobian matrix provides an update to the pose esti-
mate, Δ x!. Note that ERE is a 2n�1 vector formed by
writing Eq. (11) for i¼ 1;2;…;n:

Δ x!¼ ðJT JÞ�1JTERE ð13Þ
The pose estimate is refined until either jΔ x!j falls

below 10�10 or 50 iterations are reached. To examine
robustness to initialization with coarse pose estimates, we
conducted a simulation with synthetic 3D model and 2D
image points. For a fixed set of six 3D model points, we
varied the initial guess for RBC 104 times and generated 104

corresponding sets of six image points. Each time the
initial guess for RBC was generated from random values of
the three Euler angles drawn from the uniform distribu-
tions of ½�1801;1801�, ½�1801;1801�, and ½01;1801�. After
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computing a pose estimate for each corresponding set of
six 3D model points and six image points, it was observed
that given the true value of TBC, NRM typically converged
to the correct solution when the initial guess for RBC was
within 60 1 of the true value of RBC.
3. Framework for comparative assessment

For initial pose estimation, PnP solvers will be called
multiple times to find the correct correspondence
hypothesis. Since there exist multiple ways to generate
correspondence hypotheses, we decouple their perfor-
mance from that of PnP solvers by using a minimal num-
ber of matches between the 3D model and the 2D image in
these simulations as inputs. Monte-Carlo simulations are
Fig. 3. Geometric representation of the Perspective-n-Point problem.

Fig. 4. Typical model reduction steps to obtain simplified wire-frame model f
Rosetta spacecraft (bottom).
used to rigorously inspect performance of the PnP solvers
in the context of initial pose estimation. It is imperative to
define performance criteria, test cases and generate
simulation input data that exhaustively represent scenar-
ios of spaceborne applications. The simulations made use
of vectorized implementations of all PnP solvers and were
carried out on a 2.4 GHz Intel Core i5 processor. In order to
assess potential implementation of these solvers on a
state-of-the-art spaceborne microprocessor running at
clock-rates of 30–300 MHz, the profiling results have been
scaled appropriately. Since Coplanar PosIt only accepts
coplanar 3D model points while PosIt only accepts non-
coplanar 3D model points, for each simulation we check
coplanarity of the input and switch to the more suitable of
the two solvers. Results for this combination of solvers are
labeled as “PosItþ”.

3.1. Simulation input generation

The three inputs of the PnP solvers are n 3D model
points extracted from a wire-frame model, camera
intrinsic parameters, and n 2D image points extracted
from a virtual image of the wire-frame model. For NRM, an
input guess of the pose is also required. We select a ran-
dom attitude guess within 7 60° of the true attitude and a
random position guess with a magnitude within 7 30% of
the magnitude of the true position.

Object 3D Model: The 3D model needs to carry a high
number of features to reduce ambiguities associated with
the symmetry of spacecraft but also be simplified enough to
boost the efficiency of the search algorithms during feature
correspondence and pose estimation. With this considera-
tion, a wire-frame model derived from a high fidelity CAD
model of the Tango spacecraft from the PRISMA mission is
used in this paper (see Fig. 4). The model is input in
MATLAB as a stereolithographic file fromwhich information
about surfaces and edges is generated. Duplicate edges as
rom CAD model of Tango spacecraft (top). Output of the same steps for



Fig. 5. Sample simulation input of 3D model points (shown in red). The
discretized 3D model (shown in blue) has been plotted as a reference.
(For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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well as edges on flat surfaces are removed and the
remaining edges are discretized as 3D points. Based on an
empirically determined probability distribution, n 3D points
are selected at random for each simulation and used as an
input to the PnP solvers (see Fig. 5). Although not used in
the comparative assessment of the PnP solvers in our work,
we present the results of our model reduction procedure on
a publicly available CAD model of the Rosetta spacecraft
[21] to show the wide applicability of our method (see
Fig. 4). The model reduction procedure can potentially be
used for pre-launch validation of pose estimation techni-
ques when a CAD model of the target spacecraft is available,
or during orbit when the 3D model of the target space
resident object can be generated using Structure-from-
Motion (SfM) techniques.

Camera Model: A virtual pinhole camera model is
adopted to model the close-range vision camera embarked
on the servicer spacecraft of the PRISMA mission [16]. The
effective focal length is 20,187 �10�6 m for both axes of the
image sensor which produces images 752 px � 580 px in
size. It is assumed that the images are produced with zero
skewness and zero distortion. Origin of the camera frame C
coincides with the origin of the image frame P, with the
optical axis aligned with the z-axis. The internal calibra-
tion matrix of the camera is as follows:

K ¼
2347 0 0
0 2432 0
0 0 1

2
64

3
75 ð14Þ

Typically, the camera will be calibrated on-ground but
it can also be calibrated on-board by treating the intrinsic
parameters as five additional unknowns of pose
estimation.

Object 2D Image: Simulation input for n image points is
obtained through true perspective projection (Eq. (1)) of
the selected n 3D model points using the virtual camera
(see Fig. 6).
3.2. Performance criteria

Four criteria are used to give a quantitative definition to
accuracy, speed, and robustness of the PnP solvers. These
criteria are computational runtime of the solver, image
plane error, translation error, and rotation error in the pose
estimate output by the solver in comparison to the ground
truth used to generate simulation input.

Computational runtime: MATLAB command tic is used
to start a stopwatch timer when a PnP solver is called
whereas the command toc is used to stop the timer. Thus,
the time elapsed on the timer is reported as the compu-
tational runtime to estimate the efficiency of the solvers
relative to each other. This runtime is then used to provide
a coarse first-order approximation of the runtime on a
spaceborne microprocessor with a clock-rate of 30 MHz.
Since we are interested in implementing a realtime pose
estimation architecture on-board a spacecraft micro-
processor, it is essential for PnP solvers to consume mini-
mal computational resources.

Image Plane error: Also referred to as reprojection error,
it is defined as the mean Euclidean distance in pixels
between input 2D image points pi and the corresponding
virtual 2D image points p0i constructed from the 3D model
points and the pose estimate from the PnP solver

E2D ¼ 1
n

Xn
i ¼ 1

pi�p0ij
�� ð15Þ

Translation error: As a measure of accuracy in the esti-
mation of relative position, we define translation error as
the percentage difference between the magnitudes of the
true translation vector and the estimated translation vec-
tor

ET ¼
j T!truej�j T!est j

j T!truej
� 100 ð16Þ

Rotation error: Unit quaternion representation of the
true rotation matrix, qtrue, and the estimated rotation
matrix, qest, is used to compute the rotation error. We use
quaternion algebra to compute a unit quaternion, qdiff,
which represents the relative rotation between qtrue and
qest. The rotation error is expressed as an equivalent angle
and reported in degrees. Note that qdiff ð4Þ represents the
scalar component of the unit quaternion:

ER ¼ 2 cos �1ðqdiff ð4ÞÞ ð17Þ

3.3. Test cases

We develop four different test cases to represent the
range of possible input to PnP solvers. Our main idea is to
decouple the effects of the Earth's shadow, inter-spacecraft
distance, background interaction, and measurement noise
on the performance of the PnP solvers. Different levels of
the Earth's shadow on the target spacecraft as well as the
spacecraft orientation relative to the sun will vary the
number of features detected through image processing.
We simulate this effect by varying the number of feature
correspondences, n, being passed as an input to the PnP
solvers. Measurement noise due to the image sensor
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characteristics is simulated by adding random Gaussian
noise with zero mean and a standard deviation, σP, to the
simulation input of the image points being passed into the
PnP solvers. Background interaction may lead to features
being detected not on the target spacecraft. This effect is
simulated by changing the percentage of outlier image
points, ~p. An outlier image point in the simulations is
defined as an image point with a measurement noise
greater than 5σP.

To simulate these effects, we require values of n, σP, and
~p which are representative of images taken during
spaceborne applications of monocular vision. In order to
make these values as representative as possible, we refer
to the series of images captured by visual navigation
cameras of the Orbital Express [22] and PRISMA [23]
missions. We performed edge detection followed by
Hough transform [24] to simulate the output of a state-of-
the-art object detection subsystem. Typical results are
shown in Fig. 8 with intermediate steps shown in Fig. 7.
Fig. 6. Sample simulation input of 2D image points (shown in red). The
3D model (shown in blue) has been plotted as a reference. (For inter-
pretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 7. Intermediate steps of object detection subsystem based on edges: prep
These results are used to empirically determine the range
of n, σP, and ~p used in the following test cases.

Test Case 1: number of feature correspondences. We are
interested to gauge the performance of PnP solvers with an
input of minimal number of feature correspondences as
these solvers will be used on small sets of input to statis-
tically identify outliers and identify the correct feature
correspondence. As our first test case, we perform simu-
lations with varying number of feature correspondences
from a minimum of three to a maximum of twelve cor-
respondences. For each value of n, 104 simulations are run,
each with a different input set of 3D model points. The
true pose is kept constant for each simulation in this test
case to negate the effect of the geometry of the space
resident object. Also note that feature correspondences are
perfect, i.e., the input set of the 3D model points is cor-
rectly mapped to the corresponding input set of the 2D
image points.

Test Case 2: pixel location noise. The 2D image points can
be modeled as a sum of the true pixel locations and the
pixel location noise. The pixel location noise can be mod-
eled as a Gaussian distribution in two dimensions with a
standard deviation of σP which is shown to be proportional
to image intensity noise σI for state-of-the-art object
detection algorithms [25]. Since we can estimate σI
through a principal component analysis of homogeneous
grayscale image patches [26], we can estimate the expec-
ted values of σP in a spaceborne application. Hence, as our
second test case, we perform 104 simulations with varying
values of pixel location noise. Noise is characterized as a
Gaussian distribution with a mean of zero and a standard
deviation of σP. This noise is added to the 2D image points
generated from the true perspective projection of six 3D
model points. The true pose is kept constant and feature
correspondences are perfect for all simulations in this test
case. For a fair comparison, we limit the number of itera-
tions for PosIt and NRM so that computational runtime is
comparable to the closed-form solver EPnP.

Test Case 3: outliers. Feature correspondence of input 3D
model points and 2D image points is prone to contain
outliers due to errors in the object detection subsystem or
simply due to the geometry of the space resident. An object
detection subsystem based on edges can output partial
edges due to illumination conditions and/or false edges due
to background interaction (see Fig. 8). Such an output from
the object detection subsystem can result in an incorrect
feature correspondence. Moreover, a probabilistic approach
rocessing (left), feature extraction (middle), feature description (right).



Fig. 8. Typical output of an object detection subsystem overlaid on actual space imagery from the PRISMA[23] mission (left) and Orbital Express[22]
mission (right).

Fig. 9. Results for translation error and rotation error from simulations of all test cases: number of feature correspondences (top left), pixel location noise
(top right), outliers (bottom left), and distance along optical axis (bottom right).
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to feature correspondence is prone to errors even when
object detection is perfect, for example, when the geometry
of the space resident contains indistinguishable or sym-
metric surfaces. A robust PnP solver should negate the
effects of incorrect feature correspondences (outliers) pre-
sent in its input and produce an accurate pose estimate.
Hence, as our third test case, we perform 104 simulations
with varying number of outliers. Outliers are 2D image
points with pixel location error of 10 px. This is in addition
to the pixel location noise characterized by Gaussian dis-
tribution of a mean of zero and a standard deviation of 2 px.
This noise is added to the 2D image points generated from
the true perspective projection of twelve 3D model points.
As in Test Case 2, the true pose is kept constant for all
simulations and iterations for NRM and PosIt are limited.

Test Case 4: distance along optical axis. With fixed
camera characteristics, increasing the separation decreases
the spread in the distribution of the 2D features on the
image plane making it difficult for the object detection
subsystem to resolve features. Hence, as our fourth test
case, we perform 104 simulations with varying relative
separation of the space resident object and the camera in
the direction of the optical axis of the camera. Pixel loca-
tion noise is added to the 2D image points generated from
the true perspective projection of six 3D model points.
Noise is characterized by a Gaussian distribution with a
mean of zero and standard deviation of 2 px. The relative
attitude is kept constant and feature correspondences are
perfect for all simulations in this test case. As in Test Case
2, the number of iterations for NRM and PosIt is limited.
4. Results & Discussion

For each test case, mean and variance of performance
criteria for all simulations are represented as markers/lines
and bars/shaded regions, respectively (see Figs. 9 and 10).
Variance is reported as the interquartile range, i.e., the
difference between the upper and lower quartile values of
performance criteria.

4.1. Test Case 1: number of feature correspondences

NRM is the most computationally expensive solver due
to its use of least squares to invert the Jacobian matrix at
each iteration. Typically, least squares in NRM is an
operation of Oðc2nÞ complexity where c is a constant equal
to 6, the number of unknowns for the PnP problem. This is
highly expensive in comparison to an Oðc3nÞ overall com-
plexity of EPnP and Oð24nÞ overall complexity for PosIt.
Note that for 3rnr6, NRM requires fewer and fewer
iterations to converge as n is increased. This leads to an
overall decrease in computational runtime even though
complexity per iteration increases. For this test case, PosIt
has the highest errors in comparison to other solvers but it
improves in accuracy for increasing values n. Even though
EPnP provides a pose estimate for n¼4, it has the largest
variance in the translation error and the rotation error at
this value of n.
4.2. Test Case 2: pixel location noise

With an increase in pixel location noise in the input 2D
image points, all solvers exhibit a decrease in accuracy.
NRM has the best performance due to its use of least
squares, which is intentionally well suited to handle
Gaussian noise. PosIt and EPnP have approximately the
same variance in rotation error as well as translation error
and exhibit a linear increase in errors with an increase in
noise. But unlike EPnP which provides a closed-form
solution, errors of PosIt can be reduced at the expense of
computational runtime if more iterations are allowed. As
with the first test case, PosIt's runtime is the lowest and
NRM's runtime is the highest.

4.3. Test Case 3: outliers

Recall that an outlier image point was earlier defined as
an image point with a random pixel location error of
greater than 5σP, where σP is fixed at 2 px to characterize
the measurement noise. All solvers exhibit a linear
increase in errors when outliers made up less than 40% of
the input 2D image points. For higher percentages, errors
hold approximately constant values as the performance
degrades to levels where additional outliers have no sig-
nificant effect on accuracy. However, the slope of the
increase in errors is proportional to the pixel location error
used to generate the outliers. Comparatively, NRM has the
lowest errors while PosIt and EPnP have similar levels of
error. Absolutely, all solvers have sub-optimal performance
in the context of initial pose estimation where feature
correspondences are unknown and input of 2D image
points can contain high pixel location errors.

4.4. Test Case 4: distance along optical axis

As the distance along the optical axis is increased, EPnP
is the worst affected. One of the intermediate steps in EPnP
is the calculation of a basis of the null space of a matrix
containing all 2D image points. With increasing distance
along the optical axis and apparent shrinkage of the image,
this matrix tends to become sparse and null space esti-
mation becomes increasingly challenging. However, as the
distance is increased, SOP tends to be a better approx-
imation of true perspective projection. Hence, PosIt, which
is based on the SOP approximation has lower rotation and
translation error than EPnP. However, NRM has the lowest
translation and rotation error as even at large separations,
least squares is well suited to handle noisy input of 2D
image points.

4.5. Decision matrix

To conclude the comparative assessment, we construct
a qualitative decision matrix (see Fig. 11) with PnP solvers
indicated on the rows and the test cases indicated on the
columns. Each cell is color coded to represent the solvers’
weighted sum of relative performance as measured by the
four performance criteria. Recall that these performance
criteria were earlier defined as the computational runtime,
the image plane error, the translation error, and the



Fig. 10. Results for computational runtime and image plane error from
simulations of test case 1.

Fig. 11. Comparative assessment results for simulations from all test
cases as a qualitative decision matrix.
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rotation error. We give equal weights to the difference of
each performance criteria from the mean value of the
respective performance criteria, for all test cases and for all
PnP solvers. We then use terms “superior”, “par”, and
“inferior” to represent this difference of performance
criteria.

We see that the use of PosItþ makes the PosIt solver
applicable to both coplanar and non-coplanar points
without having a significant impact on computational
runtime. EPnP has the best performance when pixel loca-
tions are free from noise or outliers. NRM has the lowest
errors across all test cases. However, it requires an input
guess of the pose and it also has an order of magnitude
higher computational time across all test cases. In the
presence of feature outliers, all solvers have sub-optimal
levels of rotation and translation error.
5. Conclusions & way forward

Preliminary results indicate that the runtime of each
call of a PnP solver is on the order of 10 ms when
embedded in a spaceborne microprocessor (clock-rate of
30 MHz). In a typical scenario, we can expect about 103

calls of a PnP solver which makes their current perfor-
mance unsatisfactory for a spaceborne application of real-
time pose estimation. Accuracy of the PnP solvers is
acceptable only when feature correspondence is perfect
and is sub-optimal in the presence of feature outliers.
Hence, an iterative statistical approach will be necessary to
achieve pose convergence in real-world applications
where multiple feature correspondence hypotheses need
to be validated. The strength of each PnP solver lies in
different regimes and calls for a strategy to exploit the
identified synergies. Future work will implement a PnP
mode switcher based on the obtained decision matrix to
yield a fast and robust solution to the perspective equa-
tions under diverse operational scenarios. For example,
since EPnP has the lowest runtime, it can be used during
the first few iterations of pose estimation when large
number of correspondence hypotheses need to be vali-
dated. However, in later iterations when the search space
for correct feature correspondence has been reduced to a
few ambiguous hypotheses, NRM can be used due to its
better accuracy in the presence of outliers. If the pose
estimate is still ambiguous, the architecture could acquire
and process subsequent images and validate each ambig-
uous pose estimate by exploiting principles of relative
orbit dynamics and kinematics. The interplay between the
initial pose estimation and the object detection subsystem
needs to be explored further. The gradual inclusion of
more features (in number and in type) and the data editing
process need to be studied further. Since we now have a
measure of process errors in a variety of test cases, it has to
be understood how such errors could be properly incor-
porated in a filtering scheme. This comparative assessment
not only provides a framework to review initial pose
estimators but its conclusions will also serve as a corner-
stone for the design of pose estimators for future missions
involving rendezvous and proximity operations.
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